15 Projects with the Low-Cost
AVR ATtiny85 Board

foreword by Limor ‘Ladyada’ Fried

Getting
Started with
Adafruit
Trinket

Mike Barela

CVH "
& 1AaKERMEDIA

Getting Started with Adafruit Trinket
by Mike Barela

Copyright © 2015 Mike Barela. All rights reserved.
Printed in the United States of America.
Published by Maker Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Maker Media books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http:/my.safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Brian Jepson and Emma Dvorak
Production Editor: Matthew Hacker
Copyeditor: Rachel Head
Proofreader: Carla Thornton

Interior Designer: David Futato

Cover Designer: Brian Jepson
lllustrator: Rebecca Demarest

Cover Photographer: Andrew Tingle

October 2014: First Edition
Revision History for the First Edition

2014-09-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781457185946 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The
Maker Media logo is a trademark of Maker Media, Inc. Getting Started with Adafruit Trinket
and related trade dress are trademarks of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Maker
Media, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.

978-1-457-18594-6
[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781457185946

Contents

Foreword.oiiiiiiiii it i i s s s ix
Preface.cv i et e e xi
1/Introducing Trinket.ot iii ittt nsnsnnananannnnrnns 1
Trinket Versus Arduino Uno. .« v v e s i it it e e e e e e e eenaeaenns 2
UsiNg TrinKet. o v o e e i e ettt ettt e s 3
The ATtiny85 Microcontroller. . v ow e i et i ettt e e s e eaeaannns 3
/1= 0 o 7 4
L0 0] o T3 41771 5
Three Volts or Five VoIS ?. o v e ettt e e s e e e e s aneaanans 7
The Adafruit Gemma. . .. v it i e e i e e et e e e e e 8
2/Software Installation. . ..ottt it et 9
Supported Operating Systems. « . vv v et i it it i i s e i e 10
The Preconfigured Arduino IDE from Adafruit. . ..o oev i i i i i een s 10
Modifying the Standard Arduino IDE.o v ve it e 11
The USBtinyISP Driver for Windows. « v v v vvinin it ieiinencannanenns 11
Seeing the Trinket in Windows. .« v vi i i it i i i s i e e 14
Windows Driver Troubleshooting. . ..o vivin i e e 15
T 15
[0 o Y] [=] o 15
3/Connection and Programming.coiiiiiiriinnansrnnsnnssanns 17
Preparing the Trinket. . . oo v i i i i s sttt et nne s aesanannns 17
Connecting Trinket to Your Computer. ... ovii i i e s 19
Loading @ Program. . ov v e ene ittt ittt et a sttt 21
The Trinket Data Pins. .o v vv i i i i it e e e e i a e 24
Digital Pins. o v e it e e e e e s 24
N0 T 0= T 25
Exploring Data Pins. oo v vt ei it e i e ii e st 25
0= 0 £ 1 25

(07T T TCTox 4 o o LS 26

Not All Pins Arethe Same. . oo vv it i i e e e s e e e eaens 26

iii

Different Ways to Power Trinket. . .o ov i i ittt e i e s e e inennns 28

Analog and Digital SeNSOrs. . v v vt it i e e i 30
Trinket Theremin. . v e v i i i ettt s et a s sn e nasnnnrnns 30
Parts List. v e s e i e 30
W v e ettt et ettt a s a e a i an e 31
070 [32
US ittt it e e et e e et e e 34
SoUNd @NA MUSIC. + vt v et e et e e e et e e e isa e anannasanannnns 34
Lo a1 11T 35
4/Libraries and Optimization.ciii it iinnnrannnrnnnns 37
Arduino Libraries. « v v v oo e i e 37
ATtiny-Optimized Libraries. . oo v e en e i it i i e ia s i enea e nenns 39
Installing Libraries. v v e u e ettt i ettt a s a st a i a e 41
Where to Install Libraries. ..o vv v i it i e 42
Installing a Library in Windows. .o v v ieii i e e s e e e iaaenes 44
Installing a Library in OS X. o v i e i i i i e e s e e ae s a7
USIiNg Libraries. s v e e sttt a i s e in e s aenan s an e an s 49
Library Issues and Limitations. . v o v i s i e ittt i e e e 50
Memory Optimizations. ..o cv i it i i i ittt it e e 50
Program Space Optimization.cvoiii i e et 51
Variable Optimization. oo i e e 51

Lo o][] o 53
5/Intermediate Projects.viiii i i i i i s 55
Controlling Smart LEDS: NeoPiXels. « v vvv it ie i it ie i inianiannnns 55
Important Things to Know About NeoPixels. veviiiiieiininnnnn. 56
NeoPixel Packaging. « v o v ov it ittt e e e e e et e e 57
NeoPixel Ornaments. o v vu vt i i et et a et e e e e e 57
0= 0 £ 13 58
T 58
[I 7] o)] '~ -1 61
0 T T L 62
Parts List. o e i e 62
T 63
Adjustments. .o v e e e e e 67
MOUNEING. + v et ettt ettt et sa s sn e e snnssansansnnnsnnsnnns 67
Kaleidoscope GOgEIeS. . v v v e v ettt e e i et et e et e i e e annnnnnns 68
Parts List. o e it e 69
o0} 69
Battery Selection. . .v v i i e e e 70
L] = 70

iv Contents

o 141172 T 73

Final Assembly and US€. o« v v evieiineiieiin e saesnnsnnnrnnnnnnnnns 75
Safety and Common SeNnse. . v vt it i e e it e i 77
1= Y7 L 78
INSIdE @ SEIVO. v it ittt ettt e e i ettt e anaansanaranaannns 79
Trinket Servo Control. . v v e e i et i e ittt i s 80
Parts List. o e it i e i e 81
R AT = 81
(070 1 82
USBu it ittt e ettt e et e e e 83
GoiNg FUMther. .o e i i it e et a e 83
Using 12C—The Two-Wire INterface. .« vvvuesinieie s eeennnnnnnnns 84
L Y 1 £ A 85
USING 12C DISPlaySe s v v v v vt eaeeeaeeeneeaneeaneenesaneeanennnnn 85
Temperature and Humidity Sensing. .. .o vcvei it e it i e e iaeeeanns 86
Parts List. v e st e i e 87
I o = T 1= 88
The LCD Display. « s v ve v ea e e it e e e iaa e e eaenaananaanarnannns 88
Testing the Display. v v v v v e i s i ettt e it a i aata s a i anneans 90
Adjustment. oo e e 91
7= T = 91
(070 - 93
HOW [t WOrKS. « v et i e e ettt e e e asannns 94
Troubleshooting. « v v v v e i e e e e 95
Going Further. . v i e i it ittt et i 95
Ultrasonic Rangefinding. « v v vv vt v i ittt it i et et e acaaens 96
Parts List. o e st i e e 97
U] 97
I o = T 1= 99
070 1 99
HOW [t WOrKS. « e et et e i i e e e sttt e e e e nananns 102
Troubleshooting. « v v v v i e e i e ittt 102
Communicating via Serial. v v v v oot i ettt i ettt e e 102
Talking Serial v oe s et e i et e s et e e ea e aa e n s 104
Exploring Serial Use. v vuvevi it e e st i e 104
Parts List. o e et 104
(070 1 105
Ut ittt ettt it e it et a ey 106
(CToT] 7= 8 1 4 =Y 108
Pulse Width Modulation. . .. v ve i i s e e e e e e 108
The Analog Meter CloCK. v v v vin i e i i i it s i i s e a i ea e aanans 110
(O o7 B 91 = o O 110

Contents v

T R 111
Y= (= 112

I o = T 1= 113
00T 1 113
HOW [E WOrKS. s e st e e e et e et a s et na s nannnnnnnns 115
Preparing Your Meters. .o v u i it e s 116
Meter MoUNtiNg. « v oot et i e it ittt e e snnsnnssansannnnns 117
{007 o T [[119
6/Advanced Projects.o v v ii ittt 121
TrinkKet Jewelry. v v et e e i i 121
Parts List i et e e e e e e 122

(O 3T o7 122
00 123

K AL = 123

I o = T 1= 124
070 1 125
ANIMation. « o vt e e e 128
(07T 1] 11 131
Changing the Animation. oiu it i e e e ittt a e aens 132
Finishing the Jewelry. . v v i it e e i et et et s aananans 133
Program Memory for Data. . ..o oo oo e e 134
Trinket Occupancy DiSplay. v v v v et in s se i enianeesaannnannrans 135
= T £ 1 136
00 137

L1 T 137

I o = T 1= 139
070 1 139
Enclosure and Board. . v oo veveie i et e e 141
10)1 07] o] 0 1= o 1 o] o - 142
AdJUSTMENt. ottt i e e e e r e 143
Room Placement. . oo v it i e e 145
Going FUrther. « v e i e e e 145
Trinket Alarm System. v v v i it e ittt s e et e s 146
T T 1 147
o o £ 147
L1217 5775 148
Multiple Sensors, One Pin. .. v it i it i e it et e e e naenns 149
Project DeSigN. « v vt et 151
Annunciation Selections.o i i e 152
T R 153
Populating the Board. . .« oo v i i i e 154

vi Contents

Final Assembly. . v ue e it i i et et i et s a s e n s a s 160
LSS 161
Troubleshooting. - v v v v e i e e e 163
Going FUrther. v v i e i i et s e s 163
Bluetooth Communication. . .. vv v i e it i e it e e e e s i eenannns 164
Trinket Toy Animal. oo v oot e it i s et et nenannnannnnns 165
Choosing Your Animal. v . v e ie i e et e e e e e eaana s 165
Parts List. oo it e 166
00 167

(O] o] 167
Circuit Variations. s v v e e i i et s e s s a e e an e aranas 168
070 1 169
Preparing the Toy. « v v e it e e e et a e 171
US e it it it e et e e e i 173
Trinket Rover RODOt. o v vt it i i e e et et e 173
= T £ S 175
00 175

G 0 I [= S 176
] 176
LA = 179
[0 1 181
GoiNg FUMther. v e e ittt e et e e a s 183
SPI CommuUNICatioNS. « v v vt et e et e 183
Trinket Audio Player. ..o e e e 185
Parts List. o e it i e e e e 186
o o £ 187
IS0 141172 T 188
Loading SOUNAS. + vt vttt et ittt ettt et et e e, 188
Chip Loading CirCUIt. v vt i i e it i e s e et s e s aennanennens 189
Transferring AUdio. v v v vt i e et e et i e 192
SouNd Playback. v v v e si i i i e 193
USBr ittt ittt ettt e ettt e a e 197
{0707 o To1 [T L) o 197
7/Going Further with Trinket. v i ittt it ittt e s anas 199
Microcontrollers: Smaller Versus Larger. .« v vvvvevieennrnrennnens 199
The Trinket Bootloader. . .o v ou i i e i e e e aeas 200
The Bootloader Design. v v v v vvii e ie i e iaiaenian i snanenens 201
Bootloader Code. v vvvnniin it ii it it a s st i e e 201
Repairing the Trinket Bootloader. .. .o v v it e e i e e e ns 202
Programming Bare ATtiny85 Chips. . o v vvvi i i iie i iiena e 203

Contents vii

Other AVR Programming Methods. cv i i i it i e ieeaens 204

CommMUNItY RESOUMCES. « v vttt e ettt et et e e e nnnasaennnnnnn 206
Learning Arduino. .« v v e vt i e et e 207
Commercial RESOUICES. « v it it it e e i e i e et e e e rasananaannnns 207
Technical RESOUICES. . v vt ittt et et e i et e nn s ansannnnns 208
Third-Party Sites. «vvv i ettt it e ittt et et e aanaenns 208
Social Media ReSOUICES. v v vt it ittt i e e e e e e aneaarannnnnns 209

8/Troubleshooting.oiiiiiii it ittt iia et a e ananaannn 211

Your USB Cable. « v vui it i i e e et i e et a s 211

ConNeCtiVity ISSUES. v vttt ittt i i it i st e e st 212

Arduino IDE ISSUES. + v vttt et ie s se e snassassaesnnssansnnsnnssnnsnnns 215
Y2 T 215

Common Library Problems. .. oo ou i i e 217

ErrOr MeSSageS. v v vttt et ettt as et a i aasa s a i a e n s an s an s 219
Compilation ISSUBS. « vt v vttt es i e anee e a i as e snsnnsnrannnnnn 219
(701 [0 Y= o I =1 g g 0] o 221
The Serial Monitor. . v v e i e e it e e e e e ananns 222

USAgE ISSUBS. « v it et e i it e et e e e 222

Manufacturer SUPPOrt. v v v v et e i i e e 224

A/Making Electronic Sounds. oo iiiiiii i i i s 225
B/Parts SOUXCINg. . .o oo ittt s 231
C/Publications. . .. i i i ittt st ittt e e e s 235
5T L 237

viii Contents

Foreword

| like to talk about electronics and microcontrollers in terms of “BA" and
“AA" (that's Before Arduino and After Arduino, by the way). In the days
before Arduino, there were microcontrollers, to be sure. But it was really,
really annoying to work with them. UV lamps, EEPROMSs, one-time writes,
high-voltage programmers! If you wanted to dabble in microcontrollers,
the equipment and knowledge requirements were a steep hill to climb.
Thanks to the beginner-friendly (but surprisingly powerful) Arduino, mil-
lions of engineers, artists, fashion designers, and more have been able to
add electronics making to their skillsets.

At Adafruit, we've been doing Arduino projects for a very long time, and
we've noticed that while some people like to push the capabilities to the
very edge, there are many people who want something simple and small. A
one-key keyboard, or an LED light-up brooch, or a servo driver. In many
cases, the Arduino is great for prototyping but is a bit chunky. A smaller,
simpler mini Arduino can do the job just fine. That's why we designed the
Trinket, a miniature microcontroller board that can do little tasks nicely,
and can be programmed similarly to the Arduino.

The Trinket builds on the great work of the Arduino team, including David
Mellis, who first added Atmel ATtiny85 chip support to the Arduino devel-
opment environment. Even though it may seem underpowered, there's
something about the tiny size and simplicity of the Trinket (and its weara-
ble sister, the Gemma) that inspires so many projects.

I'm delighted to introduce Mike Barela as the author of Getting Started with
Adafruit Trinket. Mike has the deep engineering knowledge to explain the
innards of a microcontroller or RC filter, the craftiness to detail how to
build LED goggles, and the patience to line-by-line document the dozen
projects in this book. As you read Getting Started with Adafruit Trinket,
you'll find yourself immersed in the joy of hacking and figuring things out,
learning how to tweak just a little bit more out of the little Trinket, while
gaining knowledge of the same kinds of topics you'd run into with hulking
32-bit ARM processors.

Please try to build these projects, and—better yet—improve on them!
Show them off to your siblings, parents, children, or friends. Give them as
gifts, wear them to parties, and show off how much fun it is to Make!

—Limor “Ladyada” Fried, Founder and Engineer, Adafruit

Preface

The Trinket microcontroller provides designers with custom programma-
bility in a size and price range perfect for modern projects. The number of
projects using Trinket continues to grow, as witnessed in numerous project
builds documented in social media. This book introduces you to some of
the possibilities, providing a jumping-off point for your own explorations.

Who This Book Is For

This book is for you, the enthusiast who is expanding his knowledge of
Making and controlling items through classes or self-study.

Working with Trinket is suitable for beginners, although it is assumed you
have some familiarity with what a microcontroller is and with basic pro-
gramming principles. The book steps through basic projects, working
toward more challenging circuits and code. You'll find that | adapt and add
concepts to create new functionality. After you complete the book, you can
use it as a reference for microcontrollers, sensors, and coding techniques.

You will want to learn how to use the Arduino integrated development envi-
ronment (IDE) for most of the examples in the book. Arduino compatibles
are programmed in a variation of the C programming language with vari-
ous prebuilt code in libraries. All of the code for the examples is supplied in
the book and online. For later projects, familiarity with electronics and
project assembly is helpful but not required.

You will be following diagrams illustrating point-to-point wiring of electrical
circuits. You'll be working on a solderless breadboard, which makes this
easy to complete.

Recommended Reading

There is no required reading to work with this book, but here are some sug-
gested resources that you may draw on to better understand particular
subjects:

Component soldering with a soldering iron
The book Make: Learn to Solder by Brian Jepson (Maker Media), Tyler
Moskowite, and Gregory Hayes is a great reference. An alternative is
the "Collin's Lab: Soldering" tutorial, which you can watch for free
online. Both teach the fundamentals of soldering, an essential skill for
building electronic gadgets.

xi

http://bit.ly/GettingStartedWithTrinket
http://www.makershed.com/Learn_to_Solder_PDF_p/9781449337247.pdf.htm
https://learn.adafruit.com/collins-lab-soldering/

Familiarity with Arduino
The book Getting Started with Arduino, Second Edition, by Massimo
Banzi (cocreator of Arduino), is a good resource, as is the Adafruit
Learn Arduino series, available for free online. Both offer an introduc-
tion to the Arduino open source electronics prototyping platform,
including programming.

Other resources are listed in “Learning Arduino” on page 207.

What You Will Want to Have on Hand

To program a Trinket, you will need a Windows or Mac computer with a
USB port. Linux may also work, although Adafruit does not guarantee
compatibility with all Linux variants due to USB driver issues. Internet
access is very helpful for obtaining example code, rather than typing it in
yourself. The Internet is also great for reference material on specific sub-
jects. The Adafruit Learning System and other websites post Trinket-
related projects. Here are some other things you'll need to have on hand:

A good USB type A male-to-male Mini-B cable

| cannot stress this enough: get a good USB cable for programming the
Trinket. Please consider buying a substantial USB type A male end to
type Mini-B male cable, 3 feet (1 meter) long or less. So many visitors
to Adafruit’'s Trinket support forum have repurposed old phone charg-
ing cables or other questionable cables. Such cables, more often than
not, do not have the USB data wires required for communicating
between the computer and the Trinket. Worn cables may work inter-
mittently, but a good cable will save you hours of grief.

Basic tools

Soldering iron and solder
You will need a soldering iron and solder, to attach breadboard
pins onto the Trinket and for building more permanent electrical
circuits.

Multimeter
A multimeter capable of voltage and resistance measurementsis a
staple of any toolkit and can be purchased for under $10 or equiv-
alent in most locations.

Pliers and wire cutters
Pliers and wire cutters are essential. Wires connect all the parts
used in a project. Some other tools might be handy, too, including
a drill and screwdriver. Young makers may need assistance with a
drill or other sharp tools that might be used in project packaging.

xii Preface

http://www.makershed.com/Getting_Started_with_Arduino_2nd_Edition_p/9781449309879-p.htm
https://learn.adafruit.com/lesson-0-getting-started
https://learn.adafruit.com/lesson-0-getting-started
http://learn.adafruit.com/

Electrical parts for projects
Most of the parts sourced in the book come from the manufacturer of
the Trinket: Adafruit Industries. To gather the parts you are looking for,
turn to Appendix B. Adafruit has a good worldwide distribution system.
Other hobbyist websites may provide similar parts, but you'll need
more knowledge of how they work if they are not electrically the same
as the specified parts.

One advanced project uses 3D-printed parts. You can create
these yourself (at home, at work, or in a Makerspace) or
order them from a 3D printing service at a nominal cost.

Overall, working with the Trinket requires the same skills and materials as
working with other hobbyist electronic items.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file exten-
sions.

Constant width
Used for program listings, as well as within paragraphs to refer to pro-
gram elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the
user.

Constant width italic
Shows text that should be replaced with user-supplied values or by val-
ues determined by context.

/ This element signifies a tip, suggestion, or general note.

a This element indicates a warning or caution.

Preface xiii

http://www.adafruit.com

Using Code Examples

This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a
CD-ROM of examples from Make: books does require permission. Answer-
ing a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code
from this book into your product's documentation does require permis-
sion.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Getting
Started with Adafruit Trinket by Mike Barela (Maker Media). Copyright
2015, 978-1-457-18594-6."

If you feel your use of code examples falls outside fair use or the permis-
sion given here, feel free to contact us at bookpermissions@makerme-
dia.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in
technology and business.

Technology professionals, software developers, web designers, and busi-
ness and creative professionals use Safari Books Online as their primary
resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, gov-
ernment, education, and individuals.

Members have access to thousands of books, training videos, and prepu-
blication manuscripts in one fully searchable database from publishers like
Maker Media, O'Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Red-
books, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the pub-
lisher:

xiv Preface

mailto:bookpermissions@makermedia.com
mailto:bookpermissions@makermedia.com
http://safaribooksonline.com/?portal=oreilly
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

Make:

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Make: unites, inspires, informs, and entertains a growing community of
resourceful people who undertake amazing projects in their backyards,
basements, and garages. Make: celebrates your right to tweak, hack, and
bend any technology to your will. The Make: audience continues to be a
growing culture and community that believes in bettering ourselves, our
environment, our educational system—our entire world. This is much more
than an audience; it's a worldwide movement that Make: is leading—we call
it the Maker Movement.

For more information about Make:, visit us online:

Make: magazine: http.//makezine.com/magazine/
Maker Faire: http://makerfaire.com

Makezine.com: http://makezine.com

Maker Shed: http:/makershed.com

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://shop.oreilly.com/product/0636920031598.do
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Acknowledgments

| would like to thank Limor “Ladyada” Fried and Phillip Torrone of Adafruit
Industries for the creative environment they have nurtured for Makers.
Their encouragement and Adafruit's content donations are the foundation
of the book. Adafruit's Frank Zhao and Phillip Burgess have built exquisite
code and projects; their work, along with that of Adafruit contributors Rick
Winscot and Bill Earl, has been incorporated with their permission and my
thanks.

Thanks to the Maker Media team of Brian Jepson, Frank Teng, and Emma
Dvorak, who guided the book's production.

Preface xv

http://makezine.com/magazine/
http://makerfaire.com
http://makezine.com
http://makershed.com/
http://shop.oreilly.com/product/0636920031598.do
mailto:bookquestions@oreilly.com

Finally, thanks to Kate and Laura, who listened when presented with sci-
ence fact and fiction. To Traci, your support and encouragement, across
time and space, continues to make possible my many endeavors—my love,

always.

xvi Preface

1/Introducing Trinket

The Arduino has revolutionized the use of
microcontrollers—programmable electronics
—in the last several years, providing easy-to-
use hardware and software at a reasonable
price point. The often-cited Internet of Things
has grown from this ubiquity of easy-to-use
programmable electronics, sensors, and
communications.

One of the few disappointments that typically comes after building a per-
manent project is, “| used my Uno in my project, and now | no longer have
my $30 board.” That, and the fact that many projects do not require all the
horsepower and connectivity an Arduino Uno or larger board offers.

This “bigger is not always best” situation offered an opportunity to Adafruit
Industries, a small company based in New York City. Specializing in innova-
tive open source hardware, Adafruit has grown to become a premier sup-
plier to hobbyists and industry. Entrepreneur magazine named Adafruit
founder Limor “Ladyada” Fried as Entrepreneur of the Year for 2012, and
she has been featured in WIRED Magazine, Popular Mechanics, and other
publications.

Ladyada has an uncanny ability to look at the needs of customers and per-
sonally oversee the design of product solutions. The need for an inexpen-
sive microcontroller that can be built into projects (without guilt) led to her

introduction of the Trinket.

Trinket Versus Arduino Uno

As many people are familiar, at least in part, with the Arduino Uno, a com-

parison may help (see Figure 1-1).

Figure 1-1. The Adafruit Trinket (left) and the Arduino Uno (right)

Table 1-1 compares the features of each.

Table 1-1. Trinket and Uno feature comparison

155x%x5

Adafruit Trinket Arduino Uno
Pins (digital/analog) 5/3 (shared) 13/6
Pulse width modulated | 3 5
pins
Pin voltage 3.3 or 5volts 5 volts
Memory (flash/RAM/ | 8KB/512 bytes/512 bytes | 32KB/2,048 bytes/
EEPROM) 1,024 bytes
Size (mm) 1.2 x 0.6 x 0.2 inch/31 x 2.96 x 2.1 x 0.59

inches/75.14 x 53.51 x
15.08

Approximate cost

$6.95

$29.95

2 Getting Started with Adafruit Trinket

Using Trinket

Many projects do not require the size, power, and capabilities of larger
Arduino compatibles. Here are some categories of projects where the Trin-
ket may be a good choice:

Wearables
Wearables are a rapidly growing use for electronics. With its small size
and low power requirements, the Trinket is being used in a growing
number of clothing and body wear projects.

Sensing
The Internet of Things is composed of many small smart sensors com-
municating information about the world around us. The Trinket is per-
fect for attaching a wide variety of sensors and displaying or communi-
cating sensor status.

Tiny projects
The Trinket is well suited for any use where programmability is desired
in a small package. Very small robotics projects can be made with a
Trinket.

Lights and display
Coupled with light-emitting diodes (LEDs), the Trinket is a great choice
for DIY lighting projects. Used with smart red-green-blue (RGB) LEDs,
a Trinket can perform complex light animations. Adafruit’'s smart RGB
LEDs, NeoPixels, are controlled with only one data pin. You can drive
LED and character displays with only two pins.

New uses for the Trinket appear regularly on Internet project sites includ-
ing Instructables, Google+, and the Adafruit blog, and forums.

The ATtiny85 Microcontroller

At the heart of the Trinket is the ATtiny85 microcontroller (Figure 1-2), pro-
duced by Atmel Corporation. Despite having only eight pins in a tiny pack-
age, this controller provides the functionality of traditionally larger
processors.

The ATtiny85 was introduced by Atmel as an extremely small controller on
the outside with many of the features of larger processors inside.

Introducing Trinket 3

http://instructables.com/
http://www.adafruit.com/blog/
http://forums.adafruit.com/

Figure 1-2. The ATtiny85 (the small black square on the Trinket)

Memory

As you can see in Figure 1-3, this chip has three different types of memory.
The ATtiny85 has 8,192 bytes of flash memory for programs. The Trinket
contains bootloader code, which occupies part of this. The bootloader
assists in loading user programs from the universal serial bus (USB) port.
Adafruit has developed a custom bootloader based on the V-USB project.
With the bootloader in flash memory, there is approximately 5,130 bytes of
program memory available for user programs. Random access memory
(RAM) is used for program variables. The ATtiny85 has 512 bytes of RAM,
which seems like a minuscule amount compared to the 4 GB on a typical
laptop, but in practice this is often more than enough for many programs.

8,192 bytes Flash Memory RAM EEPROM
Free Program Memory 512 512
5,130 bytes bytes bytes

Figure 1-3. The Trinket memory map

4 Getting Started with Adafruit Trinket

http://www.obdev.at/products/vusb/index.html

Finally, the chip also contains 512 bytes of electrically erasable program-
mable read-only memory (EEPROM). You can use this memory to store
user data that remains even after the Trinket is powered off. This is useful
to save data such as setup information, state data, or critical readings. This
memory can also be useful for storing static information such as character
strings a program might use, which otherwise would occupy precious pro-
gram flash memory or RAM. However, programmers must weigh the bene-
fits of using EEPROM against the additional code the compiler may add to
manipulate data. Most programs do not use EEPROM.

Connectivity

The ATtiny85 chip uses only six pins for input and output, with two pins for
power and ground. Atmel engineers cleverly assigned multiple types of
functionality to each pin, as shown in Figure 1-4.

(PCINTS/RESET/ADCO/dW) PBS [] 1 N g []vce
(PCINT3/XTAL1/CLK1/OCIB/ADC3) PR3] 2 7 [PB2 (SCK/USCK/SCLADCT/TO/INTO/PCINT2)
(PCINT4/XTALZ/CLKO/OC1B/ADC2) PB4] 3 6 [0 PB1{MISO/DO/AINL/OCOB/OCIA/PCINTI)

GND[] 4 [PBO (MOSI/DI/SDA/AING/OCOAOTTA/AREF/PCINTO)

[

Figure 1-4. The multiple functions on the ATtiny85 pins

In the design of the Trinket, Adafruit exposes much of the chip functional-
ity. The designers added the ability to communicate over the USB serial
port, as well as status lights and a reset button. Figure 1-5 shows the Trin-
ket 5V and the functionality onboard. The pins’ functions are listed in
Table 1-2.

Data is exchanged via the pins marked #0, #1, #2, #3, and #4. The sixth
data pin (PB5) is permanently connected to the reset button and RST
input; it cannot be used as an input/output pin due to how the Trinket is
configured.

The Trinket has a power input pin, usually for a battery. There are also two
voltage output pins: one for USB power (if connected to a computer) and a
regulated power output tied to the battery input with a maximum power
draw of 150 milliamps (mA).

Introducing Trinket 5

Mini=3
USB Plug

] i
Green Power LED | i Red LED on Pin #1

Powerin (3.7 to 16 Volts DC)
Electrical Ground
Pin #4

| USB Power 5 Volts 500 ma
i Pin #0
| Pin #1

Pin #3 | Pin #2
ResetPin i Regulated Power Output
(5 Volts for Trinket 5V,
Reset i 3.3 Volts for Trinket 3V)
Button 150 Milliamperes Maximum

Figure 1-5. Trinket connections

Table 1-2. Trinket pin use

Trinket | ATtiny85 | digitalRead Analog Pulse width 12C SPI Pin is
pin function | digitalWrite analogRead modulation (TWI) shared
(PWM) with
analogWrite
#0 PBO 0 0 SDA | MOSI
#1 PB1 1 1 MISO | Red
LED
#2 pPB2 2 1 SCK | SCLK
#3 PB3 3 3 USB D-
#4 PB4 4 2 With USB D+
custom
code
RST | PB5 Connecting this pin to ground/GND resets the Reset
processor, similar to the reset button button
USB+ | Provides 5 volts at 500 milliamperes when a USB plug is USB
connected to the Trinket USB plug power
BAT+ | Battery power in (if not powered by USB), 3.7 to 16 volts (both Trinkets)
GND | Electrical ground connection (negative power lead)
3V or | Provides 3.3 volts (Trinket 3V) or 5 volts (Trinket 5V) at 150 milliamperes
5V

Of particular note is that the ATtiny85 does not have native USB communi-
cation capability onboard. Adafruit wanted to develop a bootloader with

6 Getting Started with Adafruit Trinket

the company’s own USB identification. This allowed the design to use an
existing computer driver Adafruit previously developed, which had the ben-
efit of not requiring changes to the program that the Arduino software uses
to transfer compiled code to the Trinket (avrdude).

Three Volts or Five Volts?

The Trinket comes in two versions. One operates at 5 volts direct current
(DC), the other at 3.3 volts DC. The functionality of each is nearly identical.
The 5-volt version can run from USB power or from an input voltage of 5 to
16 volts. The 3.3-volt version can run from USB power or an input voltage
of 3.3to 16 volts DC.

This provides a great deal of flexibility in powering a Trinket. A Trinket may
be powered from a wall-mounted DC power supply (like a cell phone
charger-type supply), of course. But it is also very suitable to being pow-
ered from a wide range of batteries. This includes batteries such as a single
3.7-volt lithium-polymer (LiPo) battery, three 1.5-volt batteries in series (4.5
volts), four batteries in series (6 volts for regular cells, 4.8 volts for
rechargeables), or even a 9-volt battery (although a 9-volt may not provide
current for a long time). The size of the batteries (the ampere-hour rating
of the LiPo, or whether you use AAA, AA, C, or D cells) determines how
long a circuit may last.

/ Supply Voltage Designation
Vee or VCC is one of the electronic designations for a
project’s voltage level. For this book, Ve will generally be 5
volts for projects using a Trinket 5V and 3.3 volts for projects
using a Trinket 3V or a Gemma (see “The Adafruit Gemma”
on page 8).

The 3.3-volt version may be preferable when running off a 3.7-volt LiPo
rechargeable battery. Sensors that operate on a 3.3-volt signal level are
easier to use with a Trinket 3V. The only limitation the Trinket 3V has com-
pared to the Trinket 5V is that the Trinket 3V can run at a clock speed of
only 8 megahertz (MHz).

Many digital circuits operate at a signal level of 5 volts. Hooking a 5-volt cir-
cuit to a 3.3-volt input pin could damage the Trinket 3V's ATtiny85, so for
projects that must use 5-volt signal levels, the Trinket 5V is the better
choice. The Trinket 5V can run at a clock speed of 8 MHz or, via a software
switch, at 16 MHz. Both the Trinket 5V and the Trinket 3V are used in
projects in this book. You'll probably want to buy one of each for starters.

Introducing Trinket 7

The Adafruit Gemma

The Adafruit Gemma (Figure 1-6) is a mini-microcontroller platform
designed specifically for wearable projects. It contains the same ATtiny85
processor and bootloader as the Trinket 3V. Besides the easy-to-sew
shape, the main difference is the addition of a premounted JST connector
(white in the photo) to directly connect a LiPo battery. The Gemma does
not expose data pins #3 and #4, as the Trinket does. More information on
Gemma may be found at http://learn.adafruit.com/introducing-gemma.

Figure 1-6. The Adafruit Gemma

If you need more than three data pins for a small project, the Trinket is a
better choice than the Gemma. The Gemma comes only in a 3.3-volt ver-
sion, whereas the Trinket has 3.3- and 5-volt options. Also, the Trinket 5V
may be clocked to 16 MHz, twice as much as the Trinket 3V and Gemma.
Code-wise, the Trinket and Gemma are identical.

8 Getting Started with Adafruit Trinket

http://learn.adafruit.com/introducing-gemma

2/Software Installation

The software used to program the Trinket is a
modified version of the standard Arduino
software. This is called the Arduino integrated
development environment (IDE).

The Arduino IDE, shown in Figure 2-1 is the tool that has launched several
million Arduino projects.

& Blink | Arcuino 105 [ESR e 5

File Edit Sketch Tools Help

/¢ Pin 1 has an LED connected on Trinket. Give it a name:
int led = L;

/¢ the setup routine mms once when you

woid setupl) {
£/ initislize the digitel pin 22 an output.
Yode (Led, OUTPUT)

digitalWrice(led, LOW);
deley(1000)

Adatruit Trinket @MHz on COMA

Figure 2-1. The Arduino IDE window

If you download the IDE from the official Arduino website, it will not have
Trinket programming capability installed. You can modify it to support the
Trinket, or you can download a modified version of the IDE from Adafruit.
Both options are covered in this chapter.

http://arduino.cc

Supported Operating Systems

The Arduino IDE is supported on a number of operating systems (OSs).
Adafruit officially supports use on Microsoft Windows (XP, Vista, 7, and 8)
and Mac OS X. Microsoft's support for Windows XP ended in April 2014,
limiting the security updates released from Microsoft. If you're considering
Windows, use Windows 7 or higher (skip Vista if you can).

The Preconfigured Arduino IDE from
Adafruit

Adafruit packages versions of the Arduino environment for Windows and
Mac with all the necessary modifications for programming the Trinket,
Gemma, and their larger wearable platform, Flora. The latest version of the
software is available at http:/bit.ly/Trinket_Arduino_IDE.

Mac File Download

If you try to open the Mac version of the Arduino IDE (Ada-
fruit's version or others) and the operating system says the
file is damaged, corrupt, and needs to be trashed, it is most
often due to stricter software security measures imposed by
Apple in versions such as OS X Mavericks.

The preconfigured download package was not made by a
“signed developer” and so is trapped by Mac OS X security. If
you are using Mavericks or later, you will need to change the
security setting to permit running of the Arduino IDE:

1. Go to System Preferences— Security & Privacy.
2. Click the lock icon and log in.

3. Change “Allow applications downloaded from” to
“Anywhere.”

You can now install the software. You should set the security
setting back to the default once you've launched the precon-
figured IDE for the first time. OS X will remember the setting
for the IDE application even after you restore the security
setting.

You can install multiple versions of the Arduino IDE on the same computer,
but be aware that it will use several megabytes of disk space. Also, each
version of the software will default to the same preference file, which may
place all of a user's project files in the same location. You can change the
location of the preference file by selecting the File—Preferences (Windows)

10 Getting Started with Adafruit Trinket

http://bit.ly/Trinket_Arduino_IDE

or Arduino—Preferences (Mac) menu item; the location is the first entry in
the dialog box. This will only affect the Arduino IDE in which you have made
the change.

Modifying the Standard Arduino IDE

The modifications required to add Trinket support may change as Adafruit
provides better integration with the Arduino IDE. If you are determined to
apply individual changes to an existing Arduino IDE installation, see
https://learn.adafruit.com/introducing-trinket for the most current step-
by-step process. This includes adding a new arduino.conf and Id.exe linker,
among other changes.

We recommend you download and install Adafruit's latest
version of the Arduino IDE, which can still program “stan-
dard” Arduino boards but contains the enhancements
needed for programming Trinket, Gemma, and Flora. The
modifications you'll need to make to the standard Arduino
IDE are numerous enough that missing one might result in
more time spent debugging than simply installing the latest
version.

Whether you've downloaded Adafruit's version or modified
the standard Arduino IDE, you should now be ready to pro-
gram the Trinket. If you are using Windows, however, you will
need to install one more piece of software: the USBtinyISP
driver.

The USBtinyISP Driver for Windows

For Mac and Linux, no driver is required. For Windows, you must download
a USB communication driver called USBtinyISP. First, check which version
of Windows you have by going to Control Panel and clicking the System
icon, which will display your operating system version as shown in
Figure 2-2.

Next, go to http://learn.adafruit.com/usbtinyisp/drivers and download the
file for your version of Windows. Double-click the ZIP file you download and
copy all the files you find into a new directory so you have an unzipped set
of files for later.

Software Installation 11

https://learn.adafruit.com/introducing-trinket
http://learn.adafruit.com/usbtinyisp/drivers

T = oo [P
,__,'\/ IFiCont TR A Corial el feme |7 Rttt i @k_;- 8 + CombziBasel ¢ Al Cartiz) Faraldame ¢ Sy |4 || Sazren Conti Panel 3|
- Compa P s F : °-
Wiew basic information sbout your computer
Adjust your computer’s settings % Doce Mersger
s Windows 7 Home Premiu |
§ Satam protaction -
| % acharcs ystnm catinge I
9 Speech | Syotam
18 System Fating, e ndr
- 2 al Procxer ' 1 N &
st L it bed rea) =
Wiz Updete st e 32-bit Operating System
ottt 0 ity s

Figure 2-2. Determining Windows version and type in Control Panel

/ Unzip That Driver!
Some folks have been frustrated to find that the USBtinyISP
driver will not load. One reason this could happen is if you do
not extract the files from the ZIP file you downloaded. Open
the ZIP file with Windows Explorer and copy the files to
another directory (such as a subdirectory under Downloads)
before you install the driver.

Windows 8 and Higher

Windows 8 and higher ratchet up the security required for driver software.
Starting with Windows 8.1, Microsoft implemented the requirement to
install signed drivers on a routine basis. A signed driver is software to inter-
face hardware with special signature code to authenticate the developer.
This is intended to prevent you from installing malicious software. Arduino
IDE versions 1.05 and 1.5 come with signed drivers for their boards. Ada-
fruit has a signed driver for Trinket (which also works for Gemma and their
USBtinyISP programmer). The direct link for this file is http./
www.adafruit.com/downloads/usbtiny_signed_8.zip.

If you have followed the instructions at some point for loading an unsigned
driver and you need to install the signed version, be sure to uninstall the
unsigned driver before installing the signed driver.

If you are using Windows 8 or higher, be aware of this difference in drivers.
The signed driver may also be used for Windows XP (32-bit), Windows
Vista, and Windows 7.

Instructions for installing the driver manually are provided here for Win-
dows 7 and 8. For Windows XP, see http://learn.adafruit.com/usbtinyisp/
drivers for screenshots.

12 Getting Started with Adafruit Trinket

http://www.adafruit.com/downloads/usbtiny_signed_8.zip
http://www.adafruit.com/downloads/usbtiny_signed_8.zip
http://learn.adafruit.com/usbtinyisp/drivers
http://learn.adafruit.com/usbtinyisp/drivers

If you plug a new Trinket into a Windows computer without the USBtinyISP
driver, you will see a driver installation message followed by a “device
driver software was not successfully installed” message, as shown in
Figure 2-3. If you do not get this message, press the reset button on the
Trinket to have the device recognized as communicating with the PC.

“[lL Device driver software was not successfully installed % *
s¥ Click here for details.

Figure 2-3. Error message when Trinket is plugged into a Windows PC
without the proper driver

The manual method of installing the USBtinyISP device driver is as follows.
(Reminder: If you have loaded a previous driver, it is best to unload that
driver via Control Panel—Device Manager before installing a new one).

1. Plug your Trinket into your computer’'s USB port.

2. A USB 2 port (black plastic in the connector) is preferable. If you can-
not use a USB 2 port, plug the computer’'s USB 3 port into a powered
USB 2 hub, then plug the Trinket into the hub. If you have no other
choice, you can try a USB 3 port (blue plastic inside the port connec-
tor). See Chapter 3 for connection options.

3. When your Trinket is connected to your Windows computer, go to Con-
trol Panel and search for Device Manager, then open it. You should see
an unspecified device in the USB section.

4. Right-click and select Install Driver. Click the Browse button to select
the directory with the unzipped USBtinyISP driver. Click Install. The
driver should install, displaying the successfully installed dialog box
(Figure 2-4).

=

Figure 2-4. USBtinyISP driver installed correctly in Devices and Printers

Software Installation 13

Seeing the Trinket in Windows

Although it is programmed via a USB cable, the Trinket does not act as a
Windows or Mac serial communication device (“COM port”). This is
because USB communication is not native to the ATtiny85. To work around
this limitation, and to avoid the need for a separate USB chip, the Trinket
bootloader uses a bitbang method of sending signals that a PC or Mac
(hopefully) recognizes as USB.

One reason some Linux computers may have trouble with the
Trinket is that the Linux USB code may have timing issues
with the USB protocol.

To confirm that Windows has correctly identified the Trinket:

1. Open Control Panel, and search for and open Device Manager.
2. Plug the Trinket into a USB 2 port via a cable to your computer.

3. Press the reset button on the Trinket. If Windows is set to make a
sound on driver load, you should hear it now.

4. A new category should appear in the list: libusb-win32 devices. Under
this you should see the entry USBtiny, as shown in Figure 2-5.

=1 Device Manager
File Action View Help
L AsEN P I Y
45 Dad-2012
> /M Computer
> -8 Digital Media Devices
» =y Disk drives

» B, Display adapters

b - DVD/CD-ROM drives

>-'v";;J Human Interface Devices

> g IDE ATA/ATAPI controllers

b B host controllers

Figure 2-5. Finding the driver in the Device Manager

Right-click on USBtiny and select Properties to see if Windows believes the
driver is loaded properly. The entry in Device Manager might disappear.
This is fine. It should reappear if you press the reset button again.

14 Getting Started with Adafruit Trinket

Windows Driver Troubleshooting

If the Windows XP/7 driver does not want to load or has driver-related
issues, try the signed Windows 8 driver. That driver version is compatible
with Windows Vista, 7, and 8. It should also be compatible with Windows
XP 32-bit, but not Windows XP 64-bit.

Other troubleshooting information is provided in Chapter 8.

Linux

As open source software (OSS) proponents, Adafruit originally supported
the Trinket on Linux as well as Windows and Mac. User testing noted very
strict USB port tolerances in the Linux input/output subsystem, however,
which causes inconsistent communication results. You may program the
Trinket on Linux, but Adafruit does not provide warranty support for those
who do this.

The Adafruit tutorial on Trinket is evolving as Linux issues are worked out.
As of late 2014, Adafruit has developed specific versions of the Arduino IDE
for Linux. Adafruit states that, as Linux compatibility is improved, the tuto-
rial will be updated to reflect new information.

The utility that loads the program onto the Trinket, avrdude, typically uses
superuser (root) privileges. You can configure Linux to not need these priv-
ileges, but the locations of the files you'll need to modify vary between dis-
tributions. See the latest tips for this in the Adafruit Trinket forum.

Some machines (usually slower ones) may also require a change to avr-
dude.conf. See Chapter 8 for details.

Conclusion

Software evolves, and Adafruit works to improve the user experience with
the Trinket and the software that works with it. This chapter got you set up
with the IDE and drivers, which provide the interface to the Trinket. Next,
the focus changes to hardware and code to allow projects to come
together.

Software Installation 15

https://learn.adafruit.com/introducing-trinket/introduction
https://forums.adafruit.com/viewtopic.php?f=52&t=57062

3/Connection and
Programming

This chapter demonstrates connecting a Trin-
ket to electronic components and introduces
programming techniques. You'll build circuits
and bring them to life with the code you write.

Preparing the Trinket

At this point, you'll need to gather the materials discussed in “What You
Will Want to Have on Hand" on page 12.

Most experimenters use an electronics breadboard to mount their
projects. These solderless boards (Figure 3-1) come in many sizes. The half
size or even the mini size works well for Trinket projects. A breadboard
allows the experimenter to mount a Trinket and have easy access to make
connections to other components.

Figure 3-1. Trinket with soldered headers on a breadboard

17

You'll need a soldering iron to connect headers to the Trinket board. Head-
ers, as shown in Figure 3-2, give you a secure connection between circuit
boards and external components such as cables, other circuit boards, sol-
derless breadboards, and wiring. Having plenty of headers in your parts
collection is a good practice.

Figure 3-2. Header pins make working with breadboards easier

Trinkets come from Adafruit with some male headers for breadboard use.
Your header may not come in two precut pieces of five; if this is the case,
you will need to cut the header to create a row of five for each side. Firmly
secure the header while cutting on the divide between pins. Hold both ends
of the header so one end doesn't go flying. Eye protection is strongly rec-
ommended. Once you have the two rows of five, you can solder them most
easily by pushing the rows into a breadboard and placing a Trinket on top.
The long pins should be in the breadboard, with the shorter pins facing up
toward the Trinket.

Working with a hot, clean soldering iron and a roll of solder, carefully apply
the tip of the iron onto the area where the header pin touches the gold of
the Trinket pin pad. Wait a second, then place the solder onto the joint
area; it should flow around the metal. Remove the iron. There should be a
nice, shiny, silver-looking coating on the joint. If it blobs, looks grey, or does
not otherwise flow, make sure the iron is hot and the soldering tip is clean
(before soldering, apply a tiny bit of solder to the tip to tin it). Repeat the
process, soldering all 10 pins (Figure 3-1 shows the Trinket with all the pins
soldered). When cool, you can remove your Trinket—it is now ready for use
in experimenting.

For the rest of the book, you will need various electrical components. For
example, for making circuit connections, you'll need either solid hookup
wire that you cut and strip, or premade breadboard wire. Most electrical
items sourced in the book come from Adafruit Industries, but many are
also available at Maker Shed or your favorite electronics supplier. See
Appendix B for a list of parts suppliers.

One type of component you will need that is not called out by Adafruit part
number in this book is resistors (Figure 3-3). A fundamental electrical
component, resistors impede current flow and thus are indispensable in a
majority of electrical projects. You can buy them in individual resistance

18 Getting Started with Adafruit Trinket

http://www.adafruit.com
http://www.makershed.com/collections/parts-components

values, usually in packs of five or more, at your local electronics outlet. In
the United States, RadioShack is a good source for these, and see Appen-
dix B for some other parts suppliers. Some suppliers sell a package con-
taining several of each of the most common resistor values. This may be a
more practical and economical buy. These packages are also available at
many parts outlets, including Maker Shed, RadioShack, and other sources.

Figure 3-3. Assorted resistors

If you are able, you can also use advanced electronic testing equipment.
It's not a requirement, but it is often handy to view signals with an oscillo-
scope or logic sensor. If you have access to such devices, they could help
you find some obscure issues with circuits. Some schools and Maker
spaces have this equipment available.

Connecting Trinket to Your Computer

A Trinket works best connected to a USB 2 port (the ones with the black
colored plastic piece in the connector on your personal computer). If you
do not have any USB 2 ports, you can use a USB 3 port (with blue colored
plastic in the connector), but the electrical signal timings on some USB 3
ports may not work well with a Trinket.

One way to gain a USB 2 port is plugging a USB 2 hub into the computer’s
USB 3 port (Figure 3-4, bottom). This will typically provide several USB
ports. To ensure you have plenty of power, | suggest a powered hub such as
the one stocked by Adafruit. If your computer works with the built-in USB
port, the hub is not required: it is just noted as one solution for those who
encounter issues.

Connection and Programming 19

http://www.adafruit.com/products/961

>

Powered
USB 2

Figure 3-4. Connecting Trinket via USB 2 directly or via a USB hub

Plug the male USB A side of the cable into the computer and the male USB
Mini-B side into the Trinket. If connecting via a hub, connect the computer
to the hub, plug in the hub if necessary, and then connect the hub to the
Trinket.

You should notice the green LED on the Trinket light up and the red LED
blink brightly for the first 10 seconds it is plugged in. If you have no lights,
there is a misconnection or bad cable.

/ If no LEDs light up when you apply power, remove power and
check your connections. If both LEDs light up but the red LED
only turns on dimly for a second or two and goes out, the
USB data lines were not detected properly. Try a new USB
connection and be sure there are no extra connections on
pins #3 and #4.

If your red LED continues to blink, that is perfectly fine; Adafruit tests its
boards at the factory, and the blinking is from the test program.

on any pin. Blue smoke and fire will probably result. If work-
ing with mains power, use an appropriate DC power supply
and peripherals such as a PowerSwitch Tail to do switching.

a Never, ever connect a Trinket to wall (mains) power directly

20 Getting Started with Adafruit Trinket

Once everything is connected correctly, you can download your own pro-
grams to your Trinket.

Loading a Program

Arduino programs are called sketches. One of the best programs to test a
Trinket is the ubiquitous Blink sketch. Our Blink sketch will be a bit differ-
ent, both to test the Trinket's capabilities and to be sure it is our program
running and not the factory test sketch. Example 3-1 shows our Blink
sketch with each line of code numbered and explained.

Example 3-1. Our first program to test a Trinket

/*
Blink
Turns an LED on for one half second, then off for one half second,
repeatedly.

To upload to your Trinket:
1) Select the proper board from the Tools->Board menu.
2) Select USBtinyISP from Tools->Programmer.
3) Plug in the Trinket, make sure you see the green LED lit.
4) Press the button on the Trinket - verify you see
the red LED pulse. This means it is ready to receive data.
5) Click the IDE upload button above within 10 seconds.
*
/
int led = 1; (1]

void setup() { [2)
pinMode(led, OUTPUT); ()

void loop() { (4]
digitalwWrite(led, HIGH); (5)
delay(500); (6}
digitalWrite(led, LOW); (7]
delay(500); (s

(1] Define which digital pin to write to. For the Trinket this would be pin
#1, which is connected to the onboard red LED.

® The setup routine runs once when you power on or press the reset
button.

(3] This command sets the LED pin (#1) as an output.

The loop routine runs over and over again.

(5] Setting the LED pin as HIGH turns on the current to the LED, lighting it
up.

Connection and Programming 21

O The delay function delays the number of milliseconds (thousandths
of a second). In each delay we wait 500 milliseconds, which is half a
second.

@ Setting the LED pin as LOW turns it off.

(5] Blinking the LED twice a second helps distinguish this program from
the once-a-second flash when the bootloader runs.

To ensure the program will properly compile (be converted from source
code into machine code) and load onto the Trinket, perform the following
steps in the Arduino IDE:

1. Select the Adafruit Trinket 8 MHz board from the Tools—Board sub-
menu, as shown in Figure 3-5.

2. Next, select USBtinyISP from the Tools—Programmer submenu (see
Figure 3-6).

GemmaBlink_8MHz | Arduino 1.0.5 [ESRIERX
File Edit Sketch Help
Auto Format Ctrl+T
Archive Sketch
CECE Fix Encoding & Reload
& Serial Monitor Ctrl+Shift+M j~
Blink [
Turns on an Board 2 Adafruit Gemma 8MHz
. Serial Port v @ Adafruit Trinket 8MHz
Thiz exauply
Adafruit Trinket 16MHz
Programmer 3

To upload t . . Arduine Uno

Figure 3-5. Select the Trinket as your desired board in the Arduino IDE

Check It Twice

You need to select the correct board type and programmer,
as in Figure 3-5 and Figure 3-6. This is crucial, but easy to
overlook. Check these settings frequently if you can’t other-
wise resolve error messages. This could save time and tears.

Plug the Trinket into the USB cable. Make sure you see the green LED it
(power good) and the red LED pulsing. Press the tiny Trinket reset button if
the red LED is not pulsing. When the red LED blinks, the Trinket is in boot-
loader mode (waiting to accept the program download).

22 Getting Started with Adafruit Trinket

GemmaEBlink_8MHz | Arduinc 105" r—

File Edit Sketch Help

Auto Format Ctrl+T

Archive Sketch
CECE Fix Encoding & Reload

& Serial Monitor Ctrl+ Shift+M it
Elink
Turns on an Board y [one second, repeatedly.
i 3

This exempl Serial Port

Programmer 3 AVRISP
To upload =
1} select t Burn Bootloader AVRISP mkIl

2] Zelect USBtinyISF from the Tools-»Prograume| @ | USBtinyISP
3) Plug in the Gemma/Trinket, make sure you 34 USBasp
4) For windows, install the USBtiny driwvers

5) Press the button on the Gemma/Trinket - wey
the red LED pulse. This means it is ready { Arduino as ISP P
Click the upload button above within 10 seconds

Parallel Programmer

[

Figure 3-6. Select USBtinyISP as the programmer for the Trinket

Click the upload button (or select File—Upload), as shown in Figure 3-7.

Elink
Turns on an LED on for one second, then off
This example code is in the public domain.

Figure 3-7. The Arduino IDE upload button

If everything goes smoothly, you should see the screen shown in Figure 3-8
(note no red error messages). The red LED on the Trinket will blink on and
off once a second, as we have now programmed it to do.

The bottom part of the window will display how many bytes of program
flash memory your program used, out of all the memory available (around
5,310 bytes).

If you get error messages, check for programming errors. If you have non-
programming errors, see Chapter 8 for troubleshooting tips.

Connection and Programming 23

4 3
GemmaBlink_8MHz | Arduino 1.0.5 [E=SREER

File Edit Sketch Tools Help

GemmaBlink_ShHz

Elink -
Turns on an LED on for one second, then off for one second, repeatedly.—

This example code is in the public domain.

To upload to your Gemma or Trinket:

1) Select the proper board from the Tools->BEoard Merm

2) Select USBtinyIS3P from the Tools->Programmer

3) Plug in the Gemma/Trinket, make sure you see the green LED lit
4) For windows, install the USBtiny driwvers

5) Press the button on the Gemma/Trinket - werify you see t
the red LED pulse. This means it is ready to receiwve data
Click the upload button above within 10 seconds

m

3
wJ,f|

int led = 1; // blink 'digital' pin 1 - AK& the built in red LED

/¢ the setup routine runs once when you pPress reset: 52
4| 1] b

Adafruit Trink

Figure 3-8. Success! The program is compiled and loaded (no red errors in
the black area)

The Trinket Data Pins

There are five data pins on the Trinket, numbered on the board #0, #1, #2,
#3, and #4. They each have multiple uses, depending on how you program
it. Not all functions can be programmed on all pins, due to how Atmel
designed the ATtiny85 chip and how Adafruit has designed the Trinket.

Digital Pins

A digital signal is either on or off, electrically high or low. What voltage high
means depends on the Trinket model: for Trinket 5V, high is about 5 volts
and low about O volts, and with Trinket 3V, high is about 3.3 volts and low
about O volts. If you dig deeper, there is a bit of wiggle room in these values
—typically a high is detected at more than one-half the supply voltage and
low at less than half. But to give a clean digital signal, circuits are designed
to get as close to zero and V¢ as possible to avoid false readings.

24 Getting Started with Adafruit Trinket

All five data pins may be digital inputs or outputs. For inputs, we can read
from these pins with a high or low reading, and for outputs, we can output
a high (supply voltage) or low (no voltage).

The Blink program uses a digital output. Digital pin #1 is designated as an
output in setup with the pinMode function. The pin is then set first high then
low once a second via the digitalWrite function calls. Trinket pin #1 is the
only pin that we can control and see results from without needing an exter-
nal component. That's because Trinket has an onboard component wired
directly to it: a red LED and a current-limiting resistor that sets the amper-
age flowing from the ATtiny85 through the LED to ground at about 10 milli-
amps (0.010 amperes).

Analog Pins

As for the analog pins, they are very handy for reading a voltage and acting
on the reading. See how to use them in “Trinket Theremin" on page 30.

When using an analog pin (Al, A2, or A3) with a regular Ardu-
ino, you would typically refer to it in your code with the con-
stants A1, A2, or A3. But with the Trinket, you need to use the
numbers 1, 2, or 3 instead of A1, A2, or A3 due to an Arduino
IDE bug. So, a call to analogRead(A1); on an Arduino Uno
would be written analogRead(1); in a sketch for a Trinket. The
compiler will not confuse this with D1, such as in digital-
Write(1);, because you are using an analog function.

Exploring Data Pins

An LED can be connected to any of the Trinket data lines. The circuit can
blink an LED, similar to blinking the built-in LED as we did earlier. You can
set this up on a breadboard with a resistor and an LED as shown in
Figure 3-9 (right). You'll then be able to blink the LED from whatever data
pin you connect it to.

Parts List

» 470-ohm resistor. The colors will be yellow-purple-brown, reading
from the closest end to the wire. The last band will be silver (10%),
gold (5%), or no additional color (20% stripe).

+ An LED, any color you have on hand. The diode has a polarity, as
shown in Figure 3-9 (left). The side with a flat part and a short lead is

Connection and Programming 25

the negative (cathode) lead, and the other side with the long lead is
the positive (anode) lead.

ANODE CATHODE

Figure 3-9. LED polarity and connecting a resistor to an LED and to the
Trinket

Connections

The resistor is connected from pin #2 to the LED anode and the LED cath-
ode is connected to ground. Ground should be the GND pin on the Trinket.
Change the Blink program to declare the new LED pin to be pin #2 by
changing int led = 1; to int led = 2;. Upload the new program, and the
LED should blink just like the red onboard Trinket LED did when you ran the
earlier Blink example. If there are problems, first check your program, then
the wiring. Check your LED; you may have accidentally reversed it. The
LED will not burn out on the Trinket if you reverse the leads, but you should
avoid connecting LEDs backward in other circuits in general.

You can do this for other pins, but if you choose pin #3 or #4, be sure the
Trinket is disconnected from the circuit while programming. Why are these
pins different? This is explained next.

Not All Pins Are the Same

Due to the Adafruit implementation of connecting the Trinket to the USB
for programming, and the red LED on pin #1, there are extra components
on some of the ATtiny85 pins to watch out for. Figure 3-10 shows how the
pins are connected internally.

26 Getting Started with Adafruit Trinket

ssq Pin4 Pin 0
Ugf pB4B4 PBO/BO—)

5 volts

ZENER 3.6V

Nonly ATtiny85

Pin 3 Pin1 4700
PB3/B3 PB1/B1

680Q

RED
RST LED

RESET Pin 2 —
\0—3 ps PB2B2—)

Figure 3-10. ATtiny85 to Trinket pin connections

Y

ZENER 3.8V
on Trinket

5V only

Pins #3 and #4 are used when the bootloader is active on the USB connec-
tion. These pins have resistors between them and the USB connector to
make their signals compatible with USB specifications. Pin #1 has the
resistor and red LED combination onboard. The reset (RST) pin is not usa-
ble as a general-purpose pin. You can activate the reset pin by pressing the
tiny reset button on the Trinket, or by connecting the RST pin to ground.

Despite the added components, pins #1, #3, and #4 can still be used for
input and output on the Trinket, the same as pins #0 and #2. Electrically,
components or methods may have to change when connecting to pins #1,
#3, and #4 to get the results desired. The projects in the book will tell you
when these changes are necessary.

There are some differences in how pin #1 and, curiously, pin #4 react elec-
trically to what are called internal pull-up resistors. Pull-up resistors are
similar to the 1,500-ohm resistor on pin #3 in Figure 3-10. The use is to
“pull” the voltage on a pin toward the supply voltage (V¢¢, 5 volts for Trin-
ket 5V, 3.3 volts for Trinket 3V). External circuitry can “pull” the voltage
down toward zero or ground, like the reset button does when it's pushed.
The ATtiny85 has internal pull-ups, valued at a nominal 22,000 ohms,
which you can set with pinMode(pin, INPUT PULLUP);. Many developers
count on this feature in their designs. Pin #1 has a 470-ohm external resis-
tor and an LED on the Trinket, pulling that pin toward low. The internal pull-
up does not provide enough balance to pull the pin high. Now for the
strange, undocumented behavior: pin #4 also will display neither a digital
high (V¢ signal level) nor low (a zero signal level). The value that results is
about 2.16 volts when the internal pull-up is activated. This ambiguity (not
a digital high or low reading) is not desirable in digital circuit design. The

Connection and Programming 27

solution is to place an external 1,000-ohm resistor between the pin and the
supply voltage (USB+, BAT+, or the 5V or 3V pins). The resistor will provide
enough of a current path to pull up the pin in the manner digital circuits
expect.

For complete schematics (electrical drawings) of the Trinket 3V and 5V,
see http://learn.adafruit.com/introducing-trinket/downloads.

Different Ways to Power Trinket

So far, our Trinkets have been powered via the USB connection from a
computer, as in Figure 3-11. This works for small circuits, up to a combined
current draw of 500 milliamps (0.5 amps) on a standard USB 2 port. But
the cable tethers the circuit to the computer, something not desired for
most projects for a long period of time.

USB power out, 5 volts

Figure 3-11. Powering Trinket via a USB cable

Fortunately, the Trinket is very flexible when it comes to getting power. The
BAT+ connection shown in Figure 3-12 can take 3 to 16 volts for Trinket 3V
and 5 to 16 volts for Trinket 5V.
Wall / mains power
5 to 16 volts DC
step-down transformer

Figure 3-12. Using a DC power brick with Trinket

You can also use the BAT+ terminal to connect a battery. There is a wide
range of batteries from which to choose. A lithium polymer (LiPo) battery
like the one shown in Figure 3-13 is just one choice. Battery packs made of
AAA or AA batteries also work well. AA or larger batteries can provide cur-
rent for longer periods than smaller batteries. Battery packs may connect
to the BAT+ terminal or, on version 1.1 Trinkets, to the back with an optional
surface-mount JST connector (Figure 3-13, right).

28 Getting Started with Adafruit Trinket

http://learn.adafruit.com/introducing-trinket/downloads

LP-503562 1
1200mAh 3.7V
137418

sl

Figure 3-13. Connecting a LiPo battery to a Trinket 3V

/ Rechargeable AA and AAA batteries supply slightly less
power (1.2V) than their alkaline counterparts (a little over
1.5V when fresh), so factor this in when calculating how many
batteries to use.

The b-Volt Trinket’s Little Secret

The Trinket 5V is actually comfortable running below 5 volts, down to 3.3
volts. The Trinket IDE board type (in Tools—Board) should only be set for
Adafruit Trinket 8 MHz at supply voltages lower than 4.5 volts. Above 4.5
volts, you can set the board type to Adafruit Trinket 8 MHz or Adafruit Trin-
ket 16 MHz in the IDE. The ability to power a Trinket 5V at a lower voltage
allows it to be connected to a LiPo battery at 3.7 volts, for example. Note,
however, that if the voltage to BAT+ is less than 5 volts, the voltage out of
the 5V pin will not be 5 volts, and the signal pins will be operating at 3.3
volts.

As an added power option, Adafruit released a slight revision to the Trinket
in 2014. The back was redesigned to allow soldering an optional surface-
mount JST connector (Adafruit part #1769), shown in Figure 3-14. JST is
the connector type used on many batteries and battery packs. This is a
very welcome addition, and the connection brings Gemma-like power sim-
plicity to the Trinket.

The versatility of powering Trinkets provides flexibility in designing small,
powerful projects.

Connection and Programming 29

"2

;

f:
o) o?; "3 0

C

%’ A
|
£

x 5

i

o)
O A50sA
-

:

O 3

Figure 3-14. Using a JST connector on newer versions of Trinket

Analog and Digital Sensors

Once you can blink LEDs, you'll want to start connecting something inter-
esting. Most projects contain some type of sensor to provide the ability to
sense the world around us. The Trinket is ideal for connecting a sensor,
processing its input, and reacting to or communicating the results.

Trinket Theremin

The next project is rather fun. Some background: Léon Theremin was a
Russian inventor who created one of the first electronic musical instru-
ments. His electronic instrument, also called the theremin, used the idea of
electrical circuit resonance. The circuit here differs a bit but still keeps the
magic of waving your hands to make music.

This project combines a light-sensitive cadmium sulfide (CdS) photocell
with a Trinket and a piezo speaker to play music.

Parts List

Trinket 5V, Adafruit #1501

Half breadboard, Adafruit #64

Breadboard jumper wires, Adafruit #153

Cadmium sulfide (CdS) photoresistor, Adafruit #161
Piezo buzzer/speaker, Adafruit #160

Female 5.5/2.1 mm DC power adapter, Adafruit #368
5V, 2A power supply, Adafruit #276 or similar
1,000-ohm resistor

No tools are needed beyond those required to solder headers onto a Trin-
ket for breadboard use, as noted in Chapter 2.

30 Getting Started with Adafruit Trinket

Wiring

The connections diagram is shown in Figure 3-15. This type of diagram is
made with the program Fritzing, available for free at Fritzing.org. It has
become popular for drawing project connections. Adafruit makes Fritzing

parts for many of its designs, including the Trinket, available in a download-
able parts library at https:/github.com/adafruit/Fritzing-Library.

. e LRI B O B O
. LI B B I O A
LRI B T BT O T O
. e L " e e e
LRI I " s e e LI I A " e e "

Made with [Fritzing.org

Figure 3-15. The connection diagram for the Trinket Theremin

The Trinket pin connections are as follows: pin #0 (digital pin O) is connec-
ted to the signal pin (marked with a plus symbol) on the piezo speaker, and
pin #2 (analog pin 1) is connected to the junction of the photocell and the
resistor. Power and ground may be obtained from the USB connection or
from an external supply connected to BAT+ (5 to 16 volts DC). Figure 3-15
shows a 5.5/2.1 mm power jack to wire adapter to use power from a com-
mon AC to DC transformer.

You can connect a piezo speaker to pins #0, #1, and #2 with
appropriate code changes. If it is connected to pins #3 or #4,
it will interfere with the USB bootloader during uploads. If you
decide to alter the circuit to use pin #3 or #4, disconnect the
pin #3 or #4 wires while uploading.

Figure 3-16 shows a wired breadboard. Near the reset end of the Trinket is
the photocell, with the 1,000-ohm resistor above that, near the top. The
black circle is the piezo. The piezo element is polarized, so the positive lead
should be connected to the Trinket and the negative to ground (GND).

Connection and Programming 31

http://www.fritzing.org/
https://github.com/adafruit/Fritzing-Library

without additional circuitry. A speaker has a low DC resist-
ance and will try to draw too much current from the
microcontroller.

a Do not substitute a common speaker in place of the piezo

Figure 3-16. The theremin on the breadboard

Code

The sketch code is listed in Example 3-2. You can download the code from
the repository for this book, under the folder Chapter 3 Code, in the subdir-
ectory Chapter3_02Theremin. How does it work? As more or less light hits
the face of the CdS photocell, the resistance of the photocell changes.
When the resistance changes, the voltage going into the analog pin (analog
1is on the same pin as digital 2: pin #2) will vary up and down. This analog
voltage is read by the analog pin. The combination of the resistor and the
photoresistor is a form of voltage divider, a circuit that reduces the voltage
between the two endpoints (in this instance, power and ground).

The voltage value read is scaled, or mapped (through the software map
function that provides linear interpolation), to a sound frequency value.
The piezo buzzer is then toggled on and off at the frequency calculated.
The speaker output pin must be set as an output in the setup function
using the pinMode function. Although the sound waveform will appear on
the pin without it, it will not drive the piezo correctly.

32 Getting Started with Adafruit Trinket

http://bit.ly/GettingStartedWithTrinket
http://bit.ly/linear_interpolation

Example 3-2. Sketch for the Trinket Theremin project

/* Trinket Theremin Sketch
Read the voltage from a cadmium sulfide (CdS) photocell voltage
divider and output a corresponding tone to a piezo buzzer.

*/

#tdefine SPEAKER 0 // Speaker on Trinket pin #0
#define PHOTOCELL 1 // CdS photocell on Trinket pin #2 (analog pin 1)
ttdefine SCALE 2 // You can change this to change the tone scale

void setup() {
pinMode (SPEAKER,OUTPUT); (1]

}

void loop() {
int reading=analogRead(PHOTOCELL); (2]

int freq=220+(int)(reading*SCALE); (3]
beep (SPEAKER, freq,400); (4]
delay (50); °

// The sound-producing function (6]
void beep (unsigned char speakerPin,
int frequencyInHertz,
long timeInMilliseconds) {
int x;
long delayAmount = (long)(1000000/frequencyInHertz);
long loopTime = (long)((timeInMilliseconds*1000)/(delayAmount*2));
for (x=0; x<loopTime; x++) {
digitalWrite(speakerPin,HIGH);
delayMicroseconds(delayAmount);
digitalWrite(speakerPin,LOW);
delayMicroseconds(delayAmount);

—

(1] It is important to configure the piezo pin for digital output. If you
don't do this, you won't hear anything. If you were to connect an
oscilloscope to the pin, you'd see the pin change frequency but cur-
rent would not flow to the piezo.

(2] The voltage proportional to the light hitting the photocell is read on
analog pin 1, which is Trinket pin #2 (see the diagram in Chapter 1).

® The analog value is scaled to start at 220 Hz and rise based on the
voltage multiplied by a value in SCALE that the programmer may
change as desired in the code.

O The Arduino tone function does not work for the ATtiny85 on the Trin-
ket. The beep function is similar and will work for any Trinket data pin.

Connection and Programming 33

The duration is set to 400 milliseconds; this may be changed in the
code also.

@ The delay value (in milliseconds) also is not critical and may be
changed.

O The beep code is similar to that from Dr. Leah Buechley.

A less math-intense function to produce sounds is introduced in the Trin-
ket Animal project in Chapter 6.

Use

When the circuit is powered up, it should emit a sound. If it doesn't, unplug
the power and check the connections.

A tone at a single frequency might start to annoy folks. Cup your hand and
start to block the light hitting the photocell. You will find the tone changes!
Now you can “play music” by varying the amount of light the photocell
receives at any given time.

You can change the SCALE variable in the program or even the entire calcu-
lation of the frequency freq to get different sound ranges. You may vary the
frequency calculation, the length of time the tone is generated, and the
delay between tones.

Sound and Music

Musical notes are very specific types of sound vibrations. These vibrations
are measured in frequency, or how fast the sound wave vibrates per sec-
ond. Frequency is measured in units of Hertz (cycles per second, abbrevi-
ated Hz). You can generate precise musical notes by selecting the correct
frequency.

The musical scale is in octaves of seven whole notes. If you use half steps
(sharps, which are followed by a # symbol, and flats), there are 12 notes.
Musical frequencies are listed in Table 3-1.

Table 3-1. frequencies associated with musical notes

Note Frequency (Hertz)
Ao 110.00
A# 116.54
B 12347
C 130.81
C# 138.59
D 146.81
D# 155.56
E 164.81

34 Getting Started with Adafruit Trinket

http://web.media.mit.edu/~leah/LilyPad/07_sound_code.html

Note Frequency (Hertz)
F 174.61

F# 185.00

G 196.00

G# 207.65

Az 220.00

There is a mathematical relationship in the numbers. More information on
the math of music can be found on Wikipedia.

Let's reexamine the Theremin program code. The frequency of the tone
played was calculated by freq=220+(int) (reading*SCALE);.

The minimum frequency you can generate with this piezo is 220 Hz, which
is the musical note A. If the reading on the photocell is zero, then the fre-
quency will be an A. If the reading is higher, the calculated frequency
increases, which makes the notes higher. The value of SCALE is introduced
to vary how much each change in the reading adds to the frequency. The
analogRead function outputs from 0 to 1023. The SCALE in the code is set to
2, so the maximum frequency possible would be 220 + (1023 * 2) = 2266
Hz, which is just above Dg; (rather high). You can see that the calculation
will not map to exact musical notes. Changing SCALE would raise or lower
the range of notes played. Perhaps true musicians will cringe at a perfor-
mance?

The piezo speaker does not have a wide frequency response (the span of
frequencies it can accurately produce). A typical paper cone speaker has a
better audio frequency response. However, speakers require an audio
amplifier to be added to a circuit. This boosts the signal and makes the
input level compatible with the output signal (this is called impedance
matching and driving).

Conclusion

This chapter progressed from connection basics to actual programming. In
the next chapter, I'll discuss libraries in depth, letting you create even more
complex and fun programs.

Connection and Programming 35

http://en.wikipedia.org/wiki/Mathematics_of_musical_scales

4/Libraries and
Optimization

Libraries are code written by others to pro-
vide specific software functionality that you
can use in your own sketches. The Arduino
community has hundreds of prewritten libra-
ries, most of which are free. This wealth of
code allows hobbyists and professionals alike
more time to focus on their intended projects,
and not the specifics of a specialized chip or
algorithm.

Many of the libraries currently available are written for specific Atmel or
other companies’' processors and may not work with other microcontrol-
lers. Because it uses the ATtiny85 chip, with its different memory and
architecture, the Trinket has some differences from the Arduino Uno and
other popular boards.

This chapter introduces you to many Trinket-compatible libraries and pro-
vides pointers to places where more are being developed.

Arduino Libraries

You can start to browse the libraries that are bundled with the Arduino IDE
by clicking on File, then Examples. All of the entries below ArduinolSP are
library examples (see Figure 4-1).

The ATtiny processors, to provide several types of communication proto-
cols with a small number of pins, combine hardware functionality among
pins. ATtiny maker Atmel calls its scheme Universal Serial Interface (USI).
Standard Arduino libraries for communications (serial, Two-Wire/I2C, and
Serial Peripheral Interface/SPI) will not work with the USI architecture. For-
tunately, creative folks have written alternate libraries that give us nearly
the same functionality. This may require you, however, to make changes to
how you would normally write Arduino code to run on a Trinket.

37

Blink | Arduino 1.0.5-r2
Edit Sketch Tools Help
MNew Ctrl+MN
Open... Ctrl+O
Sketchbook 3
Examples 4 (01.Basics 3 =
Close Ctrl+W 02.Digital 4 \d, repe
Save Ctrl+5S 03.Analog 3
Save As... Ctrl+Shift+5 04.Communication »
Upload Ctrl+U 05.Control 3
Upload Using Prograrmmer Ctrl+Shift+U 06.5ensors 4 3
Page Setup Ctrl« Shift+P L 4
Print Ctrl+P 08.3trings ’
09.UsB 2
Preferences Ctrl+Comma 10.5tarterkit 3
Quit CtrieQ Arduinol5P
' EEPROM 2
/4 the loop routine runs over and owe Esplora '
void loop () { Ethernet 3 N
. T T Eitata (> |
G5M 2
LiquidCrystal 3
Robot_Control 3
Robot_Motor 3
SD 4
Servo [N . con
SoftwareSerial 3
SPI 2
Stepper 3
TFT »
WiFi 2
Wire 3

Figure 4-1. The Arduino IDE built-in libraries list

The issues you may encounter when selecting Arduino libraries for use on
a Trinket include:

1. Differences between the USI hardware and serial, I2C, and SP! libraries.

2. The two timer circuits on the ATtiny85 are 8-bit, instead of the multiple
16-bit timers on the Uno. Libraries that use timers should be reviewed
for compatibility. One significant issue is that the standard Servo
library will not work, but there are Trinket-compatible replacements.

3. Memory limitations. A program or a library that uses a large amount of
RAM, library, or both can exceed the Trinket's onboard memory.

38 Getting Started with Adafruit Trinket

4. Floating-point (decimal number) math functions take a great deal of
code space—up to 2,000 bytes. If you can limit your code to integer
(whole) numbers, you can save memory.

Fortunately, there are ATtiny-optimized libraries for many functions.

ATtiny-Optimized Libraries

You can find libraries optimized for the ATtiny85 in several Internet reposi-
tories. Most Adafruit libraries are available on the code-sharing site Git-
Hub.

The following standard Arduino IDE libraries work well with the Trinket:

SoftwareSerial
The library included with the Arduino IDE. This works with the Trinket
as is. You can use any of the five data pins for serial communication;
just be careful of the resistors on certain pins, as noted in Chapter 3.

EEPROM.h
The Arduino EEPROM persistent memory library. For an example of its
use with the Trinket, see http.//bit.ly/secret_knock_drawer.

avr/power.h
Controls some of the ATtiny85 power functions.

avr/sleep.h
Controls putting the chip into a sleep mode.

Other standard libraries may also work, but not all have been tested by the
Trinket community.

The following third-party libraries have been tested and work with Trinket:

SendOnlySoftwareSerial
This library by Nick Gammon is discussed and linked to in the Arduino
forum post at http://bit.ly/SoftwareSerial_topic.

Adafruit_SoftServo
Similar to the Arduino Servo library, with a tutorial.

TinyWireM
This is an implementation of the Wire/I2C library (Master mode) that
uses the USI in the ATtiny85. For Trinket, Adafruit has a fork of the
code that works very well. Any library that uses the Arduino Wire
library may need to be modified to refer to TinyWireM.

TinyWireS
The Wire library (slave mode).

Libraries and Optimization 39

https://github.com/adafruit/
https://github.com/adafruit/
http://bit.ly/secret_knock_drawer
http://bit.ly/SoftwareSerial_topic
http://bit.ly/SoftServo
http://bit.ly/Servo_Control
https://github.com/adafruit/TinyWireM
https://github.com/adafruit/TinyWireM
https://github.com/rambo/TinyWire

TinyLiquidCrystal
This is used to drive liquid crystal displays, including those controlled
by the MCP23008 driver chips.

Adafruit_NeoPixel
The standard Adafruit smart RGB LED (WS2812B) driver library is Trin-
ket compatible. See also Adafruit's extensive guide to NeoPixels.

FastLED
An awesomely optimized library for driving many types of smart LED
products and more. Trinket and Gemma support is included.

Adafruit_LEDBackpack
Controls Adafruit LED displays. This library requires the Adafruit_GFX
library even if your project does not render graphics.

Adafruit_ GFX
The Adafruit graphics library works with Trinket, although it takes a
great deal of memory. It is used in the Trinket Occupancy Display
project in Chapter 6, but fits with only a few bytes to spare.

TinyAdafruit_RGBLCDShield
Allows control of the Adafruit RGB LCD Shield normally used with
larger Arduinos.

TinyDHT
Library compatible with DHT11/21/22 temperature and humidity sen-
sors using integer math.

TrinketKeyboard
Emulates a keyboard through the Trinket USB port (which is tricky, as
the port is not a standard USB port)—see http://learn.adafruit.com/
trinket-usb-keyboard for use.

TrinketHidCombo
Provides human interface device (HID) functions, such as mouse or
keyboard emulation, via the USB port. See http://bit.ly/Volume_Knob
for an example of using this library.

TinyRTClib
Library for the Adafruit DS1307 real-time clock module.

Adafruit_TinyFlash
Allows read/write from Winbond flash chips via SPI.

TinyNarcoleptic
A fork of the Google library for putting the processor into a low-power
state. See http://bit.ly/Narcoleptic_lib_topic for information. For other
sleep modes for the ATtiny85, see http://bit.ly/ATtiny85_Sleep_Modes.

40 Getting Started with Adafruit Trinket

https://github.com/adafruit/TinyLiquidCrystal
https://github.com/adafruit/Adafruit_NeoPixel
http://bit.ly/NeoPixel_uberguide
https://github.com/FastLED/FastLED
http://bit.ly/LEDBackPack_Library
http://bit.ly/Adafruit_GFX
http://bit.ly/RGB_Shield
https://github.com/adafruit/TinyDHT
http://bit.ly/Trinket_USB
http://learn.adafruit.com/trinket-usb-keyboard
http://learn.adafruit.com/trinket-usb-keyboard
http://bit.ly/Trinket_USB
http://bit.ly/Volume_Knob
https://github.com/adafruit/TinyRTCLib
http://bit.ly/TinyFlash
http://bit.ly/Narcoleptic_lib_topic
http://bit.ly/ATtiny85_Sleep_Modes

Servo8Bit
Some implementations of this library fail to work on the Trinket. The
Adafruit servo library listed earlier is recommended. The version at
https://github.com/solderspot/Servo8Bit is reported to work by an
Adafruit forum user.

tinySPI
This library by Jack Christensen is an Arduino SPI master library for
ATtiny44/84/45/85 that utilizes the USI hardware in the ATtiny
microcontrollers.

Arduino-UsiSerial
This library by Frank Zhao provides hardware serial control via the USI
interface on Trinket pins #0 and #1 with a default baud rate of 19,200.

VirtualWire
A library enabling use of amplitude shift keying (ASK) radio transmis-
sion on inexpensive radio frequency (RF) transmitters. An ATtiny85-
compatible version is available at http:/bit.ly/VirtualWire.

TinyNewPing
This library by an engineering student named Matthew allows use of
common ultrasonic sensors such as the HC-SR04 on the ATtiny85.

arduino-nrf24101
This library by Abe Connelly, combined with a small circuit, allows the
use of a nNRF24L01 radio module on an ATtiny85 using only three pins
(rather than five).

New libraries are written often by enterprising individuals. Use an Internet
search engine to search for terms “ATtiny85" or “Trinket" along with a the
term describing the functionality you are looking for. Some of the projects
you may find are written for other programming environments or ATtiny85
boards, so you may need to modify the code. Internet search results could
be a starting point in building the code you want to use.

The Adafruit Learning System has new Trinket and Gemma tutorials added
periodically.

See Chapter 7 for additional resources for Trinket information online.

Installing Libraries

To use a library, you must obtain the code and place it where the Arduino
IDE can find it for use in programs.

Most websites hosting code that is identified as a library, including Adafruit
and GitHub, will offer downloads of the library file as a zipped archive. You
can generally open the ZIP file with Windows, Mac, or Linux and find the

Libraries and Optimization 41

https://github.com/solderspot/Servo8Bit
https://github.com/JChristensen/tinySPI
http://bit.ly/UsiSerial
http://bit.ly/VirtualWire
http://bit.ly/TinyNewPing
http://bit.ly/nrf24l01_library
http://learn.adafruit.com/

files needed inside. You will want to copy the files out of the ZIP file, but
where should they go?

Where to Install Libraries

It is important to place your library code files in the correct location. Other-
wise, the Arduino IDE will not be able to locate them when you try to com-
pile and upload your sketches.

Locate your sketchbook folder. Your sketchbook folder is the folder where
the Arduino IDE stores your sketches. This folder is automatically created
by the IDE when you install it.

On Windows and Macintosh machines, the default name of the folder is
Arduino and the default location is in your Documents folder (see
Figure 4-2).

. Documents
My Documents
Arduino
Libraries
Adafruit ADS1X15
adafruit_BMP085
adafruit_DHT_sensor

Bluetooth

Figure 4-2. The subdirectories where libraries are located

On Linux machines, the folder is named Sketchbook and it is typically loca-
ted in /home/<username>.

This is the only difference between libraries on Linux versus
Windows and Mac machines: your sketchbook folder is
named Sketchbook, not Arduino.

User-installed libraries should go in a folder under your sketchbook folder
(a subfolder) named Libraries. This is where the IDE will look for user-
installed libraries. To locate your sketchbook folder, open the Preferences
dialog box, as shown in Figure 4-3, by clicking File—Preferences in the IDE.
The path to this folder is given in the “Sketchbook location” field at the top
of the Preferences dialog, as seen in Figure 4-4.

42 Getting Started with Adafruit Trinket

Edit Sketch Tools Help

New Ctrl+N
Open... Ctrl+0O
Sketchbook 4
S
Examples 4 F
Close Ctrl+W for one second, rep
Save Ctrl+S
Save As... Ctrl+Shift+S
| Upload Ctrl+U E— =
Upload Using Programmer Ctrl+5Shift+U
Page Setup Ctrl+5Shift+P
Driz Ctrl+P resst
Ctrl+Comma
Ctrl+Q)
/¢ the loop routine runs over and owver again forewer: -
< | 1 | »
Figure 4-3. The Preferences option is under the File menu
F -
Preferences e
Sketchbook location:
D:\Users\Your Namel\Documents\Arduino Browse
Editor language: :System Default v: (requires restart of Arduino)
Editor font size: |12 (requires restart of Arduino)
Show verbose output during: [| compilation [| upload
Verify code after upload
[] use external editor
Check for updates on startup
u Update sketch files to new extension on save (.pde -> .ino)
[] Automatically associate .ino files with Arduino |
More preferences can be edited directly in the file
C:\Users\Bill Earl\AppData\Roaming\Arduino\preferences.txt
(edit only when Arduino is not running)
ok || cancel

Figure 4-4. The Preferences dialog box

Libraries and Optimization 43

Once you know the location, navigate to this folder in File Explorer (Win-
dows), Finder (Mac), or the shell (Linux). Now you're ready to install the
library:

1. First make sure that all instances of the Arduino IDE are closed. The
IDE scans for available libraries only when the program starts up. It will
not see new libraries as long as any instance of the IDE is still open.

2. Download the ZIP file. Click the Download ZIP button on the GitHub
repository page (Figure 4-5). Alternatively, if the code is not in GitHub,
download it from the Internet site hosting the library.

3. Follow the steps listed in the following sections.

adafruit / Adafruit-LED-Backpack-Library Star 50 Fork 5

Adafruit LED Backpack Library for our 8x8 matrix and 7-segment LED backpacks
Code
38 commw 1 e] 6 con

Bl oenchmster- Adafruit.LED-Backpack-Library ol s

armple 1o uncomment lleating paint usage

README et

llcansa ot

IF = 2y Y
Make licensa. bt consistant with README license (MIT, 0 days ago
You TTRS or
Subyes
README txt
Download ZIP
This is a library for the Adafruit LED Backpacks

Figure 4-5. The Download ZIP button on GitHub

Installing a Library in Windows

Follow these steps to install a library in Windows.

1. Open the ZIP file and copy the library’s top-level folder or whatever the
main folder is named, as shown in Figure 4-6.

44 Getting Started with Adafruit Trinket

emp » Adafruit-Motor-Shield-library-master.zip » Search Adafruit-Motor-Shield-.. 2
- - _

— e s
iles =- 0 e
= Name Type Compressed size
| | . Adafruit-Motor-Shield-library-master File folder
Open
Explore
Copy
2 Properties
C
= < I | 3

»r-Shield-library-master Date modified: 10/9/2012 1:08 PM
Type: File folder

Figure 4-6. Copying the library out of the ZIP file

2. Open your sketchbook Libraries folder and paste the folder you copied
from the ZIP file into it (see Figure 4-7). If the Libraries folder doesn't
exist, create it.

Organize * Share with ~ Burn New folder = i o
- -
W Favorites Documents library e From
Libraries
- Libraries = =)
e Name Date modified Type Size
' Documents
J: My Documents . Adafruit_ADS1X15 2/5/2013 540 PM File folder
| Arduino). adafruit_BMPOBS 2/5/2013 5:40 PM File folder
| Libraries . adafruit_DHT sensor 2/5/2013 5:40 PM File folder
| Bluetooth))
| Business Arrange by »
I Corel DVD MovieFaq View »
). eagle I Sort by B
| Inkscape Group by »
| InterVideo Refresh
| LEGO Creations Paste
L. My Albums Paste shortcut
| My Corel Shows Undo Copy Crl+Z
My Shapes Share with *
). MyBackups MNew B
| OneNote Notebooks Properties
I Parcanal

Figure 4-7. Pasting the library in your Arduino libraries folder

Libraries and Optimization 45

3. Give the library folder a valid name. The name of the folder you've
copied may be different from the name the Arduino IDE expects to find
during normal use. For example, GitHub may append the word master
to the filename, which is not desired in the final installation. Also, the
IDE will not recognize folders with dashes in the name (you can replace
these with underscores, which are fine). Check the main code or
library examples for the name that the example code expects, and
change the name to that, as shown in Figure 4-8.

Crganize = ~JOpen Sharewith = E-mail Bum New folder = i @
S Pocuments llbrary Arrange by: Folder =
|pranes
s Libraries Name Type Size
“+ Documents
J: My Documents I Adafruit_ ADSIX15 File folder
| Arduino I adafruit_BMPOBS File folder
| Libraries I adafruit_ DHT_sensor File folder
| Bluetooth [Adafruit_Momr_Shield_libtar){ | 013 6:31 PM File folder
| Business

Figure 4-8. Rename the library folder to the name expected by your
program

4. Restart the Arduino IDE and verify that the library appears in the
File—Examples menu (Figure 4-9). Load one of the library examples to
test, if there is one (note that some examples may require other

libraries).
0 sy wing HDE L. =0
Edit Sketch Tools Help

MNew Ctrl+N

Open.. Ctrl+0O

Sketchbook ’

Examples ¥ 01.Basics L] i

Close Ctrl+W 02.Digital L

Save Ctri+S 03.Analog 2

Save As.. Ctrl+Shift+5 04.Communication 3

Upload Ct+U 05.Control L

Upload Using Programmer Ctrl+Shift+U 06.5ensors 2

Page Setup Ctrisshintsp | ODiPIaY ' |

Print Ctrl+p encs '
09.USB 4

Preferences Ctri+Comma 10.5tarterKit ¥

Quit cul+Q ArduinclSP |
Adafruit ADS1X15 * |
adafruit_ BMPO85 4
adafruit_DHT_sensor 5 [
Adafruit_Motor_Shield_Library * AFMotor_ConstantSpeed
EEPROM :‘F:;a::al;l:ultlsmpper EE

1 Ethemet L2

»
L3
i MotorTest
I Firmata e |
VimuiiAr nsctal " StepperTest

Figure 4-9. When you restart the IDE, your library should be listed

46 Getting Started with Adafruit Trinket

5. Verify programs that use the library compile. Ensure you have all the
needed libraries installed. Click the checkmark icon in the upper left
(compile and upload) and verify that an example sketch (or whatever
program you have) compiles without errors. If many errors are gener-
ated, compare the library folder name against what the Arduino IDE
believes the name of the library should be. If there is a difference,
rename the library folder.

Installing a Library in OS X
The following steps allow you to install a library in Mac OS X:
1. Find the downloaded library in the Downloads folder. OS X will usually

save the ZIP file in this folder by default (see Figure 4-10). If your
browser doesn't automatically open the ZIP file, double-click it to

extract it.
= m mi||m= D
FAVORITES b n
Zl All My Files = | e
" AirDrop) ; o Maurice_Ravel_-
#% Applications Mar:iil:;:f:;;ts:rmm_ FTDIUSES::H‘:%”;H‘VE‘E‘ _Pavane_po.rDEfur:te.ogg
¥ Utilities
' Documents I - . 5=
[Desktop avrdude_macosx.tar eagle-6.3.0.pkg LTspicelV.exe

i I T T I TR B W

1 of 205 selected, 556.38 GB available oz —

Figure 4-10. Finding the downloaded library

2. Open your sketchbook Libraries folder and drag the main folder from
Downloads into it (Figure 4-11). If the Libraries folder does not exist,
create it.

Libraries and Optimization 47

B Al My Files

@ wiores amtcnet
aurice_Ravel_-

Applications i : Y2 prane_po. Defumte.ogg

3 Uilities

B Documents | B O O

FAVORITES
2 Al My Files
& AirDrop
% Applications
¥ Utilities

Ll Adafruit_S§
&l Adafr

Figure 4-11. Drag your library into the Arduino Libraries folder

3. Give it a legal name. The library, if downloaded from GitHub, will have
the word “master" appended to its name. Remove that from the name
prior to use. Also, the IDE will not recognize folders with dashes in the
name. You can replace these with underscores, as shown in
Figure 4-12.

ws |8 OB (L3 Adafruit_Motor_Shield_ibrary

d e E §I::I-1 - @ || B Q
FAVORITES Tl Charlieplex_rowsBD - : Aduirult CherecterOLED « AFMotor.cop
r 1 Al My Files Sl Charlieplex_rowsPWM " Bl Adafruit_GFX » [AFMotor.h
P Airdrop i Chariliphic_rousPM_old " [l Adafruit_GPS » 8 camples
. i daphc [Adafruit_MAX31855 ; ywords.oo
% Applications [hacks 3 Adafruit MCP23008 “ README.txt

2 utilities Ml hello_world Il Adatruit_Motor_snield_Libeary I
Y il Helloworkd [l Adafruit_NFCShield_t2C
I (2ev B Adafruit_PWMServoDriver
© Downloads K Leo_gps (& Adafruit_RGBLCDShield
[Desktop] lipraries * B3 Adafruit_S5D1306
= _ Ll lolshield_source - B At S 331

5 items, 556.35 GB avallable

Figure 4-12. Rename the library if necessary

4. Restart the Arduino IDE and verify that the library appears in the
File—Examples menu (Figure 4-13).

If the library has example programs included, testing whether an
example compiles in the IDE is a great way to be sure the library is
functional. If the example works, you can proceed to test your own
code that uses the library. If code that uses the library does not com-
pile, see Chapter 8 to troubleshoot the library installation. Bear in mind
that some programs rely on other libraries, which will also need to be
installed.

48 Getting Started with Adafruit Trinket

& Arduino [ZTY Edit Sketch Toals

adafruit suppont
Examples ampere_crc_test
Close %W arduino-0022 source .
Save ®S | arduino-1.0.1 .
Save As... aMs BreatheRightStrip

Upload =u Bulbdial 3
Upload Using Programmer (13U Charlieplex
Charlieplex_ports8D
Charleeplex_rowsBD
Charlieplex_rowsPWM

Page Setup TP
Print

E

. FAVORITES I Adobe Ree
Charlieplex_rowsPWM_old B Al by Pl BB Amazing €
daphe S © App Soee.
hacks & AirDrop [Apple Rer
hello_world pplications [Ardumo 3
HelloWarld N nilities S Arduimo vt

s K2ev2 . D Arduing,
Leo_gps ¥ Gocuments T Arduino.n
b AccelStepper » Downloads 4 Art Direct:
lnlshield_source Adafruit_CharacterOLED * Desktop B Asocho
luminance_test Adafruit_GPS [.
o ¢ | midi_debug Adafruit_MAX3 1855 .

3 mpll15a2_test Adafruit_MCF23008 » Ao
oldParallel_RCE_PWM_32u4 AFMotor_ConstantSpeed
Parallel_RGE_PWM_32ud Adafruit_NFCShield_12C » AFMaotor_MultiStepper

menr. | rawirdecode Adafruit_ i > v

e rgh_led_HelloWorld Adafruit_RGBLCDShield 3

) T1_800MHz Adafruit_S5D1306 3 StepperTest
T1_800MHz_normal_made Adafruit 5501331 - T Deakton

iU wackyand_not Adafruit_ST7735 > e
wavehc20110919 » Adafruit TFTLCD >

"t Adafruit_Thermal »

AF_Wave .
AFMator .
DateTime 3
Ds3231 [
LiguidCrystal .
LolLShield 3
LPD8806 3
newSdFat -
newWaveRP -
RTClib 3
50 3
ST7565 .
StackArray L
Time 3
TimeAlarms .
T5L2561 .
WaveHC 3

Figure 4-13. Viewing the libraries in the Arduino IDE

Using Libraries

To use a library, use the #include statement near the top of the sketch. For
example, to use the SoftwareSerial library, place the following line at the
top:

#include <SoftwareSerial.h>

The .h at the end of the name SoftwareSerial tells the processor this is a
header file, which defines objects and code for use later in the program.
See the examples throughout the book for how libraries are included.

At times, you may want to use several libraries in one program. In some
cases, libraries require other libraries: any library performing 12C communi-
cation will need the TinyWireM library, for example, and some Adafruit dis-
play libraries require the Adafruit_GFX library.

Sometimes you will just wish to add two or more libraries for their function-
ality. But as you layer on such code, the amount of program space the
libraries require increases. Using several large libraries probably will

Libraries and Optimization 49

require more than the 5,130 bytes of flash program memory available
(recall that the bootloader takes up the rest of the 8,192 bytes of program
memory on the ATtiny85).

When two libraries want to use the same ATtiny85 resource (one that is not
meant to be shared), they can conflict. For example, the SoftwareSerial
library will not work with the TrinketKeyboard library, due to both wanting
the same change interrupt vector (an ATtiny85 hardware resource). It may
or may not be possible to edit a library to avoid a conflict.

You should carefully decide which libraries are required for your project.
Try using libraries one at a time and see how much program space is left
for additional functionality. If adding a library exceeds the available space,
remove the #include line and decide what to do next. If your project cannot
do without the affected code, you might have to consider another micro-
controller platform. This is discussed in Chapter 7.

Some code use could bloat your program without your knowledge. Certain
optimizations may help, which | discuss next.

Library Issues and Limitations

If you get Arduino IDE errors when using a library, see “Common Library
Problems” on page 217 for common issues.

Libraries written by third parties may not take into account the resources
or situations encountered by other users. Although libraries provided by
experienced developers may be better tested, they may not be ideal for
your application. Most carry open source licenses, but some do not. And
many hobbyist libraries may not be crafted to the same level as the exam-
ples in the Arduino IDE. If you are wondering what you are getting yourself
into, this is good. But not to worry! In most cases you should read what the
library is intended for, study the documentation or examples, including
function calls and parameters, then try it. It may not be exactly what you
want; if not, you can delete the library and move on. If the library provides
the functionality you like, however, you have more time to work on your
project.

Memory Optimizations

Getting the most out of the Trinket without exceeding its capabilities may
require some optimization. Some programmers use coding methods on
the Arduino Uno and Mega that are not optimized but work well due to the
larger resources on those controllers. But for the Trinket, practices may
harken back to the 1980s, when every byte of memory was to be con-
served. Be it program space or RAM/variable space, the methods dis-
cussed here can be used to reduce the amounts required for running your
code.

B0 Getting Started with Adafruit Trinket

Program Space Optimization

Here are some tips for reducing your program size:

» Avoid floating-point (decimal) numbers. The full floating-point library
can be 2,000 bytes or more. That is three-fifths of your available pro-
gram space. If you can use integer (whole) numbers only, you will
save considerable space. The TinyDHT library mentioned earlier is an
integer-optimized version of the full Adafruit DHT library that you can
use to save space.

+ Don't use math functions. Using pow(x,2) to get x? could incur more
program space than x*x. Likewise, the sqrt (square root) and trigono-
metric functions can be very large. Other language functions may be
much smaller. Experiment to see which ones create issues.

« Comment out code you will not use. If you have code your program
will not use, enclose it within a /* .. */ comment block so the com-
piler will ignore it. This includes any functions you do not plan to call.

* Reuse code. If a portion is used in different parts of a program, con-
sider placing that code in a function and call the function when
needed.

Variable Optimization

Most users do not declare large amounts of variables, but it is possible that
you may call code that does. The Adafruit-NeoPixel library dynamically
allocates memory for each pixel to store the red, green, and blue numeric
colors. Approximately 110 pixels can be used without other variable usage,
often less with your own use. Displays often use RAM if the display hard-
ware does not provide its own display storage (called buffering).

You can check the amount of remaining memory with the code shown in
Example 4-1.

Example 4-1. Function to return the amount of free
RAM on an Arduino compatible

int freeRam () {
extern int __heap_start, * brkval;
int v;
return (int) &v - (__brkval == 0 ? (int) & heap_start : (int) _ brkval);

Typical use might be if(freeRam() < 100) digitalWrite(1,HIGH);, which
would turn on the pin #1 red LED if RAM is low.

Libraries and Optimization 51

The following are ways to save valuable RAM:

» Do not declare unneeded variables. The compiler most likely will
detect this and save you, but then again, it may not.

« Do notinclude unneeded libraries.

« If a variable is only needed in the scope of a function, declare it in the
function and not globally. The dynamic memory allocator for func-
tions will clean these up if they're local. Pass variables as function
arguments, such as myfunction(variable1, variable2), rather than
using global variables if possible.

« If you have fixed values that never change, declare them static, as in
static int MinutesPerHour = 60;. The compiler should optimize
these values.

You can also control the size of various signed and unsigned integers. The
C language is not explicit when you declare a variable as type integer or
unsigned integer, but the Trinket works most effectively with 8-bit data (as
the ATtiny85 is an 8-bit microcontroller). You can be sure to get an 8-bit
integer when desired by declaring variables as int8 t or uint8_t for signed
and unsigned integers, respectively. The values that can be represented by
8 bits are:

+ 8-bit signed integer(int8 t): -128 to 127
+ 8-bit unsigned integer(uint8 t): O to 255

For larger numbers, you can use 16-bit integers:

+ 16-bit signed integer (int16_t): -32,768 to 32,767
+ 16-bit unsigned integer (uint16_t): O to 65,535

For even larger numbers, you can use 32-bit numbers:

« 32-bit signed integer (int32_t): —2147483648 to 2147483647
+ 32-bit unsigned integer (uint32_t): 0 to 4,294,967,295

If your numbers will not exceed certain ranges, you can optimize your code
and memory usage by using the correct declarations. The caution is that if
a value does exceed a range, an error will not be generated and the wrong
value will be registered. Consider the following statements:

uint8 t var = 255;

var = var + 1;
The value of var will not be 256! It will wrap around via binary math to zero.
Check your program, and if a value will grow, allocate enough space for the

b2 Getting Started with Adafruit Trinket

maximum value. If only positive numbers will be used somewhere, you can
consider an unsigned integer. For example:

for (i=0; i<100; i++) { j = i + 100; }

We can declare variable i an int8 t or a uint8_t. j will exceed 127, so it
should be at least a uint8_t, or maybe a 16-bit number if additional math
may make it go higher than 255.

Saving one or two bytes in an entire program may not make much of a dif-
ference overall, but it could if memory is short. Also, if you declare many
variables, these small savings could make all the difference. This can be
especially true when using arrays. For example, int16_t array[100]; takes
200 bytes of RAM, while int8 t array[100]; takes half as much.

More exotic methods are used by some folks to reduce memory use, but
judicious variable usage and good coding practices are highly recom-
mended to save memory.

Conclusion

Libraries can greatly expand program functionality while giving you more
time to focus on designing and building your project. Not all Arduino libra-
ries work with the Trinket, due to the ATtiny85 processor’'s limitations.
There are still many libraries that do work, though, and optimizing code
and memory usage will provide the ability to fit projects into the con-
straints the Trinket presents. Although some believe the petite amount of
memory the Trinket offers is problematic, most recognize it as a challenge
to build projects to fit the Trinket's capabilities. It is a slightly more refined
process, with the reward being amazing power in such a small package.

Libraries and Optimization 53

Hh/Intermediate
Projects

Now that you know how to harness the power
of libraries in your programs, you can build
many additional projects that demonstrate
the versatility of the Trinket. Starting with the
popular NeoPixel LEDs, the projects in this
chapter use servos, sensors, serial communi-
cation, and real-time clocks. The principles in
these projects translate over the wide variety
of technologies used in Maker projects.

These projects have build details that require more advanced skills or
tools. Younger Makers may need assistance from more experienced
builders.

Controlling Smart LEDs: NeoPixels

The way we use single-color LEDs (introduced back in Chapter 3) has not
changed much in the last 30 years. About 15 years ago, tricolor LEDs in a
single package appeared. Containing a red, green, and blue LED in one
package, these LEDs were placed into art and the first large color displays.
They are still widely used today, but they have some characteristics that
make them hard to use in small projects. They have three control lines and
one common lead. Our five-pin Trinket would need to give up three
valuable data lines to drive a single tricolor LED.

Fortunately, innovation in LED technology continues. In recent years, LEDs
with built-in control chips have revolutionized how we connect and use
LEDs. Small flat-package LEDs only require connections to power, ground,
and a single digital signal line to set the intensities of the red, green, and
blue LEDs in creating the desired color. Adafruit's NeoPixel (see Figure 5-1)
is a product line of such LEDs, packaged conveniently in breadboard-
friendly versions, rings, strips, and sewable versions.

55

http://www.adafruit.com/neopixel

Figure 5-1. Close-ups of a WS2812B smart LED (Adafruit’s NeoPixel)

The innovation in LED connections has also given us the power to chain
multiple LEDs together without additional data pin connections to a Trin-
ket. An output pin on one NeoPixel connects to the input pin on the next.
The number of NeoPixels is limited only by the amount of RAM available on
the microcontroller (to hold the color values). The limit has been tested at
approximately 110 pixels for the Trinket using Adafruit's NeoPixel library.
This equates to 330 bytes of memory, leaving 182 bytes set aside by the
compiler for variables and the stack (function value storage). Even with a
large number of pixels, only one Trinket data pin is needed to control an
entire string.

Important Things to Know About
NeoPixels

Not all addressable LEDs are NeoPixels. “NeoPixel” is the Adafruit brand
for individually addressable RGB color pixels and strips based currently on
the WS2812B LED/drivers, using a single-wire control protocol. Other LED
products—WS2801 pixels, LPD8806 strips, and “analog” LED strips—use
different control methodologies (and have their own interface methods). If
you want to build a project that specifies NeoPixels, be sure you obtain the
correct parts. If you have one of the other types of smart LED products,
see the FastLED library listed in Chapter 4.

Unlike a regular LED, a NeoPixel does not just light up when power is
applied; it requires a microcontroller (such as a Trinket) and some pro-
gramming to send specific control information to its data pin. This pro-
grammability allows your code to create effects and animations.

Each NeoPixel has a data in (Din) digital signal line and a data out (Dout)
line. To control multiple pixels, you only have to connect the Dout pin of a
NeoPixel product to the Din of the next product, and so on down the line.
You start the numbering from the first pixel (number zero) to the last
through the connections you make.

b6 Getting Started with Adafruit Trinket

NeoPixels are not the answer for every project, but their flexibility and
packaging make for beautiful and compelling displays.

NeoPixel Packaging

NeoPixels come in a variety of layouts: single pixels, strips, rings, sticks,
and matrices (see Figure 5-2). New products come out periodically, as this
is a fast-growing hobbyist area.

Figure 5-2. A variety of individual NeoPixels along with strips, rings, and
matrices

NeoPixel Ornaments

One of the most popular uses of NeoPixels is creating simply amazing dec-
orations. With a simple circuit, you can create a variety of colors and pat-
terns.

Figure 5-3 shows the diagram for a simple two-pixel circuit powered over
the USB port. USB 2 can supply 500 milliamperes (mA), or 0.5 amperes.
Each pixel may draw a maximum of 60 mA. Powering a Trinket and two pix-
els is well under the USB current limit. In later projects, we'll use an exter-
nal power source to allow for using many more pixels.

Intermediate Projects 57

Parts List

« Trinket 5V, Adafruit #1501 or Maker Shed #MKADG9

» Breadboard-friendly NeoPixels (4-pack), Adafruit #1312 or Maker
Shed #MKAD60

+ Half breadboard, Adafruit #64, Maker Shed #MKKNZ2, or equivalent
(afull breadboard is fine)

» Breadboard wires, Adafruit #153, Maker Shed #MKSEEED3, or equiv-
alent

+ Optional: 4xAA battery holder, Adafruit #830, and 4 AA batteries

Build

We'll take power from the Trinket USB+ pin for this project. The NeoPixel
drive signal is from Trinket pin #0. You wire the two NeoPixels in series, as
shown in Figure 5-3—the pin #0 signal goes to the first NeoPixel Din pin,
and the first NeoPixel Dout (labeled O) connects to the second NeoPixel
Din pin.

L L d L L
L Ld L

. - U R I I T

- LI R B I T A

.. - LI R R T T A

.. - I R R T T

.. - L S R T T A

L L " " " DR

L L L R B B B B

L L L L R R B B B

L L L AL R R B B B

L L L AL R R B B B

- e 0w LI I L O - e e

.. " e - s 8w - e

Made with [Fritzing.org
Figure 5-3. Controlling two NeoPixels with Trinket

If you plan to power this type of circuit with batteries, connect the positive
terminal of a 4 AA battery pack to the Trinket BAT+ pin and the black wire
to the GND pin. The Adafruit AA holder has an on/off switch for
convenience.

B8 Getting Started with Adafruit Trinket

Next, upload the program shown in Example 5-1 from the repository for
this book (directory Chapter 5 Code, subdirectory Chapter5_01TwoNeoPix-
els).

Example b-1. Testing Two NeoPixels with Trinket

/* Getting Started with Adafruit Trinket - Two NeoPixel Program */
#include <Adafruit NeoPixel.h> // Add in the Adafruit-NeoPixel library @

#define PIN 0 // NeoPixel signal output pin @
t#tdefine NUMPIXELS 2 // How many pixels we will use

// Set the NeoPixel data structures and operation

Adafruit_NeoPixel strip =
Adafruit NeoPixel(NUMPIXELS, PIN, NEO GRB + NEO KHZ800);

void setup() { @
strip.begin(); // This sets up NeoPixels for use
strip.show(); // Initialize all pixels to 'off’

void loop() {
int8 ti; @

for(i=0; i <= 255; i++) { @
// Cycle the first NeoPixel up in blue, the second down in red
strip.setPixelColor(0,strip.Color(0,0,i)); O
strip.setPixelColor(1,strip.Color(255-1,0,0));
strip.show();
delay(6);

}

delay(100);

for(i=255; i »=0 ; i--) {
// Cycle the first NeoPixel down in blue, the second up in red
strip.setPixelColor(0,strip.Color(0,0,1));
strip.setPixelColor(1,strip.Color(255-1,0,0));
strip.show();
delay(6);

}

delay(100);
(1] You must include the Adafruit-NeoPixel library, which you can obtain

from https:/github.com/adafruit/Adafruit_NeoPixel and install per
the instructions in Chapter 4.

(2] Here, you make some definitions allowing you to easily change
things: the pin on the Trinket to connect to the NeoPixels and how
many pixels to drive. The last values—NEO_GRB and NEO_KHZ800—are

Intermediate Projects 59

http://bit.ly/GettingStartedWithTrinket
http://bit.ly/GettingStartedWithTrinket
https://github.com/adafruit/Adafruit_NeoPixel

the values for all the NeoPixels now sold by Adafruit (other values can
be used with some other brands of smart LEDs).

® The setup function initializes the data structure for the NeoPixel strip.
The loop cycles the color intensity of the LEDs; the first one cycles up
then down in blue and the second cycles down then up in red.

O Variable i is an 8-bit unsigned integer (uint8_t), which is big enough
as long as you restrict its use to between 0 and 255, as described in
“Variable Optimization” on page 51.

(5] Each time through the loop function, you directly manipulate the blue
value (the third parameter in the Color function) and the red value
(the first parameter). The green value (the second value) is left at
zero. If you prefer green over red, you can change it to a fixed number
or cycle it as a function of variable i or 255-1.

0 The strip.Color function takes three numbers, a red, a green, and a
blue value, from 0 to 255 (low/off to high/full on). The return value is
a single 32-bit (long) integer for the combined color. The strip.set-
PixelColor call takes two values: the pixel number and the 32-bit
color number. This is why we have strip.Color nested into the set-
PixelColor function call.

Be sure you have selected Trinket 8 MHz in the Arduino IDE
Tools—Board menu. If this setting does not match the code
used, the NeoPixels may not receive the correct timing sig-
nals and appear as all white LEDs, all off, or exhibit other
unexpected behavior.

With these basic connections and some programming, you can build a
wide variety of projects. Single pixels are useful on very small projects such
as ornaments. You can bundle a Trinket, NeoPixel(s), and a battery into any
semitransparent enclosure for a wonderful display (Figure 5-4). If you have
a 3D printer, you can create complex custom enclosures for your NeoPixels
in a variety of colored plastics. A craft store provides a range of materials
that can be used for ornamental projects.

Alternatively, you can use a Trinket and two NeoPixels to make cute blinky-
eyed toys. One great project is an interactive toy by Manoel Lemos
(Figure 5-5).

60 Getting Started with Adafruit Trinket

http://www.manoellemos.com/interactive-toy-with-adafruit-trinket-and-neopixels/

Figure 5-4. A NeoPixel tree topper ornament by Rick Winscot

Figure 5-5. An interactive Trinket and NeoPixel toy by Manoel Lemos

LED Color Organ

Once you have multicolored lights, you can use sensors to have them
respond to the world around us. A popular electronics project involves

Intermediate Projects 61

LEDs flashing to sound, such as you might see at a concert. In the 1970s,
incandescent color organs were popular, with their lights flashing to music
(usually disco). This project is a Trinket circuit that provides this same
effect for your next concert.

How It Works

Color organs sample sound and flash lights based on either the sound
intensity or frequency. The higher-end units use analog or digital signal
analysis to determine the sound energy in selective parts of the frequency
spectrum and flash the lights accordingly.

The Trinket can provide sound intensity sampling and display any number
of colored patterns based on music volume, as shown in Figure 5-6.

Figure 5-6. The NeoPixel color organ on a breadboard

Parts List

You have the freedom to choose an array of NeoPixel types to make the
project. You may want to sketch out your own light layout, too.

« Trinket 5V, Adafruit #1501, or Maker Shed #MKAD69

* Electret microphone amplifier MAX4466, Adafruit #1063

* NeoPixels: Flora RGB V2 pack of 4, Adafruit #1260, or breadboard-
friendly RGB NeoPixels, Adafruit #1312 or Maker Shed #MKAD60

» NeoPixel ring(s): 16-pixel Adafruit #1463 or Maker Shed #MKAD75,
24-pixel Adafruit #1586, 12-pixel Adafruit #1643

+ 10,000-ohm (10K) potentiometer, Adafruit #562 or similar

62 Getting Started with Adafruit Trinket

« 5V, 2A power supply, Adafruit #276 or similar
Female 2.1/5.5 mm DC power connector, Adafruit #368
Full breadboard, Adafruit #239, Maker Shed #MKELS3, or similar

+ Hookup wire, Adafruit #289, #288, #290, or similar (such as Maker
Shed #MKEE3)

Optional: Full perma-proto board for permanent build, Adafruit #1606
or Maker Shed #MKAD50

Optional: Other NeoPixel products

Optional: 5V, 10A power supply (to power many, many pixels), Ada-
fruit #658

Build

The best way to start is to breadboard first, as shown in Figure 5-7. You can
then transfer the circuit to a small perma-proto circuit board when you are
satisfied with your circuit and want to consider a permanently mounted
project.

Microphone
(gain adjust on back)

5 Volts

1_"—_- O ::i:::::.

Optional for brightness adjust Made with | Fritzing.or

Figure 5-7. Wiring diagram for the color organ

If you haven't already, solder the headers supplied to the Trinket's pins to
facilitate breadboarding, as directed in “Preparing the Trinket” on page 17.
You can also solder a small three-pin header on the microphone breakout
board for a breadboard connection. For a more permanent circuit, you
could use a servo extension cable to extend the microphone. Alternatively,
you can solder three wires from the microphone breakout to the Trinket,

Intermediate Projects 63

power, and ground lines to extend placement of the microphone through
an enclosure.

You can use a range of NeoPixels for your project, up to a limit of about 110
(with appropriate power supply). The single NeoPixels pictured have single
header pins soldered on. The ring was placed over the middle single LED. If
you plan to build a permanent circuit, wiring to the pads would be a better
choice.

NeoPixel Connections

Connect the Dout pin of one NeoPixel product to the Din pin
of the next. When programming, the first NeoPixel (num-
bered zero) is the first one in the chain, with each one follow-
ing the wiring to the last pixel on the last product.

A good 5-volt power supply is very important if powering more than three
NeoPixels. Calculate the maximum power by multiplying the number of
pixels times 0.060 amperes, then add 0.050 amps for the Trinket cir-
cuit; that is the minimum current you should budget for. Select a power
supply that can provide more than your anticipated maximum current. For
large, power-hungry strips, the Adafruit 5-volt, 4-amp, or 10-amp supplies
or equivalent could be required.

Power for the microphone breakout is taken from the Trinket 5-volt regula-
ted power pin.

Trinket pin #2 is both an analog and a digital pin. This circuit uses it as ana-
log pin 1 to read the varying voltage from the microphone breakout.

Trinket pin #0 is used as the digital signal line out to the string of NeoPix-
els.

If you would like to control the brightness of the pixels, you can add a
potentiometer (nominal 10 kiloohms; anywhere between 1,000 ohms and 1
megaohm should be fine). The center wiper is connected to pin #3 (analog
3 in the Arduino IDE). The changing voltage is read and mapped to the
range the NeoPixel setBrightness function uses to set the pixel brightness.
If you're not using the potentiometer, comment out the value POT_PIN by
prefixing that line of code with //, and the code will use the maximum
brightness.

If you have trouble loading programs after adding the potentiometer, this is
due to pin #3 being shared with the USB port. Temporarily remove the
Trinket from the circuit to load the program, then place it back into the cir-
cuit. If you make a permanent circuit board, use female headers as a
socket to plug your Trinket into for ease of programming.

64 Getting Started with Adafruit Trinket

The code for this project is in Example 5-2 and can be downloaded from
the repository for this book (directory Chapter 5 Code, subdirectory Chap-
ter5_030rgan).

Example b-2. The LED Color Organ code

/* LED "Color Organ" for Adafruit Trinket and NeoPixel LEDs*/

#include <Adafruit NeoPixel.h>

#define
#define
#define
#define
#define
#define
#define

N_PIXELS 19
MIC PIN 1
LEDPIN 0
DC_OFFSET 0
NOISE 100
SAMPLES 60
TOP

// Number of pixels you are using
// Microphone is attached to Trinket Pin #2/(A1) [2)
// NeoPixel LED strand is connected to Pin #0 [3)
// DC offset in mic signal - if unusure, leave O

// Noise/hum/interference in mic signal

// Length of buffer for dynamic level adjustment
(N_PIXELS +1) // Allow dot to go slightly off scale

// Comment out the next line if you do not want brightness control

#define POT_PIN

byte
peak =0,
dotCount = 0,

volCount = 0;

int
vol[SAMPLES],
1vl = 10,

minLvlAvg = 0,

maxLv1Avg

512;

Adafruit_NeoPixel strip =
Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800);

void setup() {

memset(vol, 0, sizeof(vol));

strip.begin();

void loop() {
uint8_t i;
uint16_t minLvl, maxLvl;

int

n
n
n
1vl

n, height;

analogRead(MIC_PIN);

abs(n - 512 - DC_OFFSET);

(n <= NOISE) ? 0 :
((Ivl * 7) + n) > 3;

(n - NOISE);

// Used for falling dot
// Frame counter for delaying dot-falling speed
// Frame counter for storing past volume data

3 // if defined, a potentiometer is on Pin #3 (A3) (4]

// Collection of prior volume samples
// Current "dampened" audio level
// For dynamic adjustment of graph low & high

// Clear the sample array

// Raw reading from mic @

// Center on zero
// Remove noise/hum

// Dampened reading (else looks twitchy)

// Calculate bar height based on dynamic min/max levels (fixed point)
height = TOP * (1vl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < oL)

else if(height > TOP) height =

height = 0;
TOP;

// Clip output

Intermediate Projects 65

http://bit.ly/GettingStartedWithTrinket

if(height > peak) peak = height; // Keep 'peak’ dot at top

// if POT_PIN is defined, we have a potentiometer on Pin #3 on Trinket
uint8_t bright = 255;

#ifdef POT PIN
bright = map(analogRead(POT_PIN),0,1023,0,255); @
#endif

strip.setBrightness(bright);

for(i=0; i<N_PIXELS; i++) { (7
if(i >= height)
strip.setPixelColor(i, 0, 0, 0);
else
strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));

}
strip.show(); // Update strip

vol[volCount] = n; // Save for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Rollover sample counter

// Get volume range of prior frames @
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];

}

if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;

minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)

}

uint32_t Wheel(byte WheelPos) { ©
if(WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(o, WheelPos * 3, 255 - WheelPos * 3);
}
}

(1] Change this value if your project has a different number of NeoPixels.

(2] If you change the pin for the microphone, change this value. Use the
analog pin number, not the Trinket (digital) pin number, per “Connec-
tivity” on page 5.

(3] The NeoPixel pin can be changed to any digital pin.

o A potentiometer to adjust the pixels is recommended. The potenti-
ometer center lug is connected to an analog pin. Because this uses

66 Getting Started with Adafruit Trinket

analog 3 (Trinket pin #3), you must remove the Trinket to program it
(pins #3 and #4 are shared with the USB port).

@ The value from the microphone is read here. It is then conditioned
such that low volumes tend to turn pixels off, while loud, continuous
volumes of sound make most of the pixels light.

0 If a potentiometer is connected, read it and use the value to set the
brightness of the LEDs.

@ Color pixels are based on a rainbow gradient. If you want other color
schemes, you can change the pixel color setting algorithm here.

© minLvl and maxLvl indicate the volume range over prior frames, used
for vertically scaling the output graph (so it looks interesting regard-
less of volume level). If they are too close together, though (e.g., at
very low volume levels), the graph becomes coarse and “jumpy,” so
some minimum distance is kept between them (this also lets the
graph go to zero when no sound is playing).

O® Aninput value of 0 to 255 returns a color value that transitions from R
to GtoBandback toR.

Adjustments

The main adjustment you will want to make is to the gain on the micro-
phone breakout, which is done using a tiny silver potentiometer on the
back of the board. Use a small Phillips screwdriver to make small adjust-
ments while you make sounds or play music with both some loud and soft
passages. This might take a bit of trial and error.

You may want to rearrange your pixels to produce colors in a pattern that
you like. You can also change some of the constants at the beginning of the
program to adjust the behavior. Finally, the brightness potentiometer is
optional. In a cabinet, you may want maximum brightness. In a dark room,
it is beneficial to be able to tone down the light a bit.

Mounting

The typical color organ cabinet of the 1970s had a wood grain or black
plastic box and a clear diffuser. Of course, the wood grain was typically
faux.

To create your own cabinet, you can choose nearly anything. A clear plastic
case works well, but the light will not diffuse through a clear lid; it will go
straight through and you will not get that fuzzy-light look.

You may select a cabinet size to suit your decor. Repurposing a box made
of nearly any material is ideal. To give it that faux-wood-grain look, there
are a number of contact papers marketed as shelf liners that would do

Intermediate Projects 67

nicely. To make an inexpensive diffuser, a replacement fluorescent light fix-
ture plastic cover is ideal and inexpensive.

You can find supplies at home stores. If you want a more professional look,
a well-made wood cabinet (Figure 5-8) is hard to beat. Repurposing an old
speaker cabinet or other box is ideal.

Figure 5-8. Mounting the project inside a wooden box with diffuser

Place your electronics in the back of the box, spacing your LEDs to suit
your desired pattern. Test the project before securing the LEDs to the back
of the box to ensure you like the light pattern when sound is made. If you
find the sketch is not producing the ideal light pattern, you can change
some of the parameters to get a reaction more suited to your taste. Ensure
you adjust the microphone gain to pick up the sound at the levels you want.
When done, cover the front with the diffuser, and place it in the desired
area to add that special ambience.

Kaleidoscope Goggles

This is a very popular project from Adafruit by its resident blinky expert
Phil Burgess. Wearable electronics are exploding in high fashion, trendy
adornments, and cosplay. When it comes to costumes, a glowy set of
steampunk goggles is irresistible. Note that these goggles are for wearing
on top of your head (on a hat is perfect) as a fashion accessory—they will
probably be too hard to see out of with all the electronics added.

Adafruit 16-pixel NeoPixel LED rings fit perfectly inside the eyecups of
most 50 mm round goggles (which is a very common size). It is almost as if
these rings were made with this project in mind (actually, they were, then
clever folks came up with many more uses). This project is a bit more diffi-
cult than the previous ones, but can be done with some patience.

68 Getting Started with Adafruit Trinket

Figure 5-9. Kaleidoscope goggles by Phil Burgess

Parts List

» Trinket 3V, Adafruit #1500 or Maker Shed #MKAD70 (an Adafruit
Gemma #1222 would work as well and use the same code as the Trin-
ket)

» 16-NeoPixel ring, Adafruit #1463 or Maker Shed #MKAD75

« 3.7V 150 mAh lithium polymer battery, Adafruit #1317, and USB LiPo
battery charger, Adafruit #1304

+ Alternate power source: 3xAA battery holder, Adafruit #771 or similar,
and 3 AA batteries

+ Heat-shrink tubing pack, Adafruit #344
« Costume goggles (50 mm / 2 inch round), Adafruit #1577 or similar
» Connecting wire (20 to 26 gauge, stranded or solid)
» JST-PH battery extension cable (500 mm), Adafruit #1131
OR

Optional: JST-PH surface mount connector, Adafruit #1769 (for Trin-
ket version 1.1)

Tools

You will need the following tools to build this project:

» A soldering iron to make the wire connections

» Adhesive, such as tape for a temporary fit or hot glue for final
assembly

» Wire strippers to cut wires and remove insulation

+ Pliers to help make wire splices

Intermediate Projects 69

» Optional: Heat gun for heat shrink (be careful not to melt other parts)

Battery Selection

Choose one of the following to fit your budget and desired run time. The
pros and cons of each are listed:

Lithium polymer (LiPo)

+ A 150 mAh LiPo battery is tiny and easily fits within the goggles,
but the power capacity is limited and run time will be shorter. To
improve run times, the software can be changed to lower the
overall LED brightness and reduce power usage, or you can sub-
stitute a larger LiPo battery. If the battery is too big, however, it
will not fit inside the goggles and you will need to run wires and
hide the battery elsewhere.

« Costs more initially, but it is rechargeable.

* You will also need a LiPo charger and JST socket inside the gog-
gles. For the latter, cut a LiPo battery extension cable in half or
use the JST surface mount connector. The battery gets discon-
nected for charging (it does not charge in place).

3 AA alkaline cells
 This saves money initially; the battery case and cells are inexpen-
sive and you do not need a charger.

» Provides excellent run time. You can use brighter, showier LED
patterns, and you can easily swap in a fresh set of batteries.

» The battery pack is much larger and heavier. It will not fit inside
the goggles—you will need to run wires and put the battery pack
in a pocket or conceal it behind (or within) a hat, mask, pants, or
shirt.

Wiring
You need only a few connections, with a couple of tricky things to watch
out for.

Depending on the eyewear design, you might need to snake wires through
some parts, and you may not have an opportunity to test the full circuit
separately on the bench first. If you do build the complete circuit first and
install in the goggles afterward, make sure all the wires are long enough
(e.g., to go across the bridge of the nose); extra wire can always be folded
up, but wires that are too short are frustrating, as they would need to be
replaced.

70 Getting Started with Adafruit Trinket

As seen in Figure 5-10, the wires pass through holes in the sides of the gog-
gle eyepieces. Therefore, it is not easy to build the circuit, test it, and then
mount it in the goggles. It must be built around the goggles and later folded
into place. This can be tricky!

You may need to split power leads three ways from the battery to the Trin-
ket and the two NeoPixel rings. Even a regular 1-to-1 inline splice can be
tricky for the inexperienced; three-way is an extra challenge. It is a little
easier with narrow-gauge wire (e.g., 26 gauge). Referring to Figure 5-11,
work slowly and methodically. Remember to slide heat-shrink tubing on
first, before joining the wires, and use proper soldering techniques. Heat
the wires and apply the solder there; do not move a glop of solder from the
iron onto the connection.

The plus and minus (power and ground, respectively) split three ways,
from the battery holder (or JST socket) to the Trinket and NeoPixel ring(s),
or two ways, if you're using a single monocle ring. Plus (+) connects to BAT
+ on the Trinket and positive power on the ring(s). Minus (-) connects to
GND on both the Trinket and the rings.

Connect Trinket pin #0 to the Din connection on the first ring.

If using two rings, connect Dout from the first ring to Din on the second
ring, as seenin Figure 5-12.

Figure 5-10. Passing wires through the goggles

Intermediate Projects 71

Figure 5-12. The goggle wire layout using an AA battery pack

When using a LiPo battery the circuit is essentially the same (Figure 5-13),
with just a couple of changes:

» A LiPo battery replaces the 3xAA battery holder.

» Use a JST socket (cut from a battery extension cable) or the Trinket
rear surface mount JST connector rather than soldering directly to
the battery leads. This allows the battery to be unplugged for
recharging.

1S8MAH 3.7

Figure 5-13. The goggle wire layout using a LiPo battery

72 Getting Started with Adafruit Trinket

Your LED code might not require any specific orientation to the rings, in
which case the rings can be installed any which way. Other code requires a
known direction for certain visual effects to work (e.g., eye blinks). If aiming
for the latter, try to follow the orientation shown here, and make sure the
wire lengths are sufficient for those angles. Viewed from the front, the first
NeoPixel (#0) should be at the top—immediately to the left of the Dout
connection. Viewed from the back, it will be on the right of that hole. You
can make a mark on the back with a marker to help line things up when
installing the circuit into the goggles.

Software
Be sure you install the Adafruit_NeoPixel library introduced in Chapter 4.

The standard goggles code can be found at File—Sketchbook—Libra-
ries—Adafruit_NeoPixel—goggles and in the repository for this book
(directory Chapter 5 Code, subdirectory Chapter5_02Goggles).

From the IDE Tools—Board menu, select Adafruit Trinket 8 MHz. Connect
the Trinket to your computer with the USB cable, press the reset button on
the Trinket board, and then click the upload button in the Arduino IDE (a
right arrow icon). If all is well, when the battery is connected, you should
get a light show from the LEDs.

While it is very showy, the goggles example sketch included with the library
requires a great deal of power. It will drain the small LiPo battery in 15
minutes or less. This is why, alternatively, you can use the larger external
pack with code.

Or, to save power, you can write your own program that lights fewer LEDs
at a time. Sticking with primary colors (red, green, or blue) also can reduce
power use. (For instance, white requires about three times as much cur-
rent, because all three colors are lit simultaneously.) A simpler version,
shown in Example 5-3, is still interesting while using just a small fraction of
the power of the goggles sketch included with the library (it can run for
about three hours on the small LiPo battery).

Example 5-3. NeoPixel Goggles code

/* Low-power NeoPixel goggles example.

Makes a nice blinky display with just a few LEDs on at any time.
*/
#include <Adafruit_NeoPixel.h> (1]

t#tdefine PIN 0O // NeoPixel rings signal connect to Trinket Pin #0
#define NUMPIXELS 32 // 16 LEDs per ring, 32 for two rings

Adafruit NeoPixel pixels = Adafruit NeoPixel(NUMPIXELS, PIN);

uint8_t mode = 0, // Current animation effect @

Intermediate Projects 73

http://bit.ly/GettingStartedWithTrinket

offset = 0; // Position of spinny eyes
uint32_t color = 0xFF0000; // Start red
uint32_t prevTime;

void setup() { (3]
pixels.begin();
pixels.setBrightness(85); // 1/3 brightness (range: 0-255)
prevTime = millis();

}

void loop() { (4]
uint8 t i;
uint32_t t;

switch(mode) { (5)

case 0: // Random sparks - just one LED on at a time!
i = random(NUMPIXELS);
pixels.setPixelColor (i, color);
pixels.show();
delay(10);
pixels.setPixelColor(i, 0);
break;
case 1: // Spinny wheels (8 LEDs on at a time)
for(i=0; i<16; i++) {
uint32_t c = 0;
if(((offset + i) & 7) < 2) ¢ = color; // 4 pixels on...
pixels.setPixelColor(i, c); // First eye
pixels.setPixelColor(31-i, c); // Second eye (flipped)

pixels.show();
offset++;
delay(50);
break;

}
t = millis();

if((t - prevTime) > 8000) { // Every 8 seconds... @
mode++; // Next mode
if(mode > 1)\{ // End of modes?
mode = 0; // Start modes over
color >>= 8; // Next color R->G->B

if(!color) color = 0xFF0000; // Reset to red

for(i=0; i<NUMPIXELS; i++) pixels.setPixelColor(i, 0); @
prevTime = t;
}

}

© You must include the Adafruit-NeoPixel library, which you can get
from https:/github.com/adafruit/Adafruit_NeoPixel and install per
the instructions in Chapter 4.

(2] Initialize the variables mode and color for lighting effects.

74 Getting Started with Adafruit Trinket

https://github.com/adafruit/Adafruit_NeoPixel

® The setup function initializes the data for the NeoPixel rings in strip.
The brightness is set here also, and you can vary the brightness from
off (0) to full (255). You'll save battery life if you keep the brightness
down (and NeoPixel LEDS are very bright at 255).

O For different animations, change the loop function code.

6@ Two modes are preprogrammed: sparks (single pixels) and spinny
wheels (eight LEDs at one time).

O Currently, the animation mode is changed every 8 seconds. On every
mode change, the color is shifted through red, green, and blue.

@ Thisfinal loop sets the colors on the rings before looping back.

Final Assembly and Use

NeoPixel LEDs are very bright and focused. You will probably want to cre-
ate some form of diffuser to soften the light. If the goggles you chose were
originally designed for welding, they will have very dark ultraviolet (UV) fil-
ters installed, usually with a second clear glass or plastic lens over this.
Unscrew each eyepiece and remove the welding filters. Leave the goggles
disassembled.

For a simple diffuser, set the lens on a piece of paper and outline it with a
pencil or pen. Regular copier or printer paper works fine, or you can use
fancy drafting vellum if you have it (Figure 5-14). Cut out your traced
shapes with scissors. Vellum is very translucent, so you might want two
layers per eye (four circles total).

Figure 5-14. Optional vellum diffuser inserts for the goggles

If you have access to a laser cutter (through a local hackerspace, your
school, or elsewhere), you may measure the diameter of the lenses
removed from your goggles as a template for cutting new ones; 1/16” white
acrylic works well for this.

Reassemble the goggles using just the clear lenses with the diffusers
behind them. Connect the battery temporarily to make sure all the elec-
tronics are working prior to final assembly. It is easier to troubleshoot while
everything is out in the open. If your goggles are made of metal, make sure
there is no contact between the goggles and any exposed conductors.

Intermediate Projects 75

Fit the NeoPixel rings in place inside each eye cup. As explained in the wir-
ing section earlier, there is a definite “up” orientation to the rings. Make
sure they go in the right way. The rings can then be held in place using a
few dabs of hot glue around the perimeter.

Disassembly
If you need to remove the rings later, dip a Q-tip in rubbing alcohol, touch it
to the edge of each blob of hot glue and allow it to soak in for a few sec-
onds. This does not dissolve the glue. It seeps between the two parts and
cleanly breaks the bond. The glue should peel away with little effort.

Ring removal after having been positioned with a glue gun:

Next, position the Trinket board inside one of the eye cups and secure it
with hot glue as well (Figure 5-15). You may want to position it where the
USB port is accessible, so you can upload new code later. Then fold up any
wire slack and hold it in place with a few more dabs of glue.

Because the goggles used in this example are metal, rest the Trinket board
on a piece of foam tape to avoid shorting. Plastic goggles are easier to
work with in this regard.

If you're using a small LiPo battery, you will probably want to use masking
tape (not hot glue) to hold the battery in place in one of the eye cups. Then
it can easily be removed for recharging. If you are using an external battery

76 Getting Started with Adafruit Trinket

pack, sew a few loops of thread to secure the wire to the goggle strap as a
strain relief.

Figure 5-15. Positioning the Trinket inside the goggles

Safety and Common Sense

Your LED goggles are a fashion accessory. They should be worn on your
forehead or on a hat, not over your eyes. The scattered light inside the gog-
gles is still very bright, and can cause headaches or possibly eye injury or
nausea. The goggles may also limit your peripheral vision, so wearing them
is not a great idea: stick them up above your eyes.

If you have modified a pair of welding or safety goggles, their design is now
compromised, and they should no longer be used for welding or safety. For
the same reasons, if attending an event like Burning Man, take one (or sev-
eral) pairs of “real” sealed dust goggles in addition to your LED “fun” gog-
gles. Do not rely on decorative goggles for protection.

Safety Checklist
1. Never use the altered goggles for safety or eyewear. They are
strictly a fashion item.

2. If your goggles have metal frames, make sure there is no contact
with exposed conductors on the Trinket board, NeoPixel rings, or
wires.

Intermediate Projects 77

Wearable Electronics

Wearable electronics has become the fastest growing segment of the con-
sumer and hobbyist industry in the last two years with no end in sight.
Smart watches and fitness bands dominate the current commercial space,
while talk of Google Glass and New York Fashion Week electronic creations
crowd the media.

The Pebble Watch (left) and Trinket Necklace (right):

Likewise, hobbyists around the world are creating some mind-blowing
wearable creations. Seeing the potential, many companies have developed
materials to accelerate the market. Adafruit, SparkFun, and other compa-
nies have established wearable groups or market wearable electronic com-
ponents.

The Trinket provides for electronic programmability in a small package
highly suitable for wearable projects such as watches, light-up clothing,
and electronic jewelry.

Servos

Servo motors are a popular and simple way to add movement to projects.
Best known to some for RC model control, servos, shown in Figure 5-16,
are also used in many microcontroller projects.

78 Getting Started with Adafruit Trinket

Figure 5-16. A standard servo with a variety of horns (mechanical connec-
tors)

A standard servo rotates 180 degrees (halfway around a circle). The stan-
dard model will not fully rotate like an electric motor. Another type of
servo, a full-rotation servo, is designed to rotate a full 360 degrees.

Servos are most often packaged with horns, various shaped pieces that
you can screw on top of the servo shaft. This makes it easier to mechani-
cally connect the servo to the item you want to move. You can drill the vari-
ous radial holes on a horn to fit screws or other connectors.

Inside a Servo

A servo actually has a rather complex series of components inside.
Besides a motor, it has a digital circuit that detects specific pulses on the
data line to determine the angle to turn to. An internal potentiometer (vari-
able resistor) gives the circuit feedback on where it is in the rotation sweep.
Gearing provides torque (mechanical power) to the rotation.

Servos typically have three connections: the digital data connection,
power, and ground. Servos come in various voltages, but 5 volts is very
common.

The servo expects to receive a pulse every 20 milliseconds (fast to us, not
so much to an 8 MHz microcontroller), as shown in Figure 5-17. If the pulse

Intermediate Projects 79

width (the time it is high/on) is 1 millisecond, then the servo will go to the O
degree position. As the pulse width increases, the shaft will turn. A width of
1.5 milliseconds produces a 90-degree rotation, and a 2-millisecond (maxi-
mum) value produces the full 180-degree rotation.

L Period 20 ms |
I ”

Pulse width 1 to 2 milliseconds

Figure 5-17. Pulse width stream used to control a servo

Trinket Servo Control

The Trinket's small size makes it ideal for lightweight projects, including
robotics. The project shown in Figure 5-18 demonstrates the use of a stan-
dard hobby servo with the Trinket.

T _f

Figure 5-18. Controlling a servo with Trinket

The standard Arduino IDE Servo library will not work with 8-bit AVR micro-
controllers like the ATtiny85 on the Trinket due to differences in the chip’'s
timer hardware.

80 Getting Started with Adafruit Trinket

The Adafruit_SoftServo library, which we met in Chapter 4, uses one of the
two timers available on the Trinket to provide servo control pulses.

To start using servos, you'll build a simple circuit that allows you to control
the servo with a potentiometer.

Parts List

 Trinket 5V, Adafruit #1501 or Maker Shed #MKAD69
+ USB cable for power and reprogramming

+ Standard 5V hobby servo, Adafruit #155, #169, or similar (such as
Maker Shed #MKPX17)

+ Potentiometer, anything from 1K ohms to 10K ohms, Adafruit #356,
#562, or similar

« Half breadboard, Adafruit #64, Maker Shed #MKKN2, or similar

» Breadboard hookup wires, Adafruit #153, Maker Shed #MKSEEED3,
or similar

» 5V power supply, Adafruit #276 or similar
» Female 2.1/5.5 mm DC power connector, Adafruit #368

Wiring
The connections are shown in Figure 5-19. The Trinket is connected to the
power rail, as is the servo and the outer pins of the potentiometer. The sig-

nal wire of the servo goes to Trinket pin #0, while the center of the potenti-
ometer is wired to Trinket pin #2 (analog pin 1).

Made with) Fritzing.org

Figure 5-19. Wiring diagram for Trinket control of a servo

Intermediate Projects 81

Code

The project code is in Example 5-4 and can be downloaded from the repos-
itory for this book (directory Chapter 5 Code, subdirectory Chap-
ter5_05Servo).

Example 5-4. Code for the Trinket Servo Control
project
/* Trinket Servo Control Sketch */

#include <Adafruit_SoftServo.h>
#define SERVOIPIN 0 @
#tdefine POTPIN 1 2]

Adafruit_SoftServo myServol; // create servo object

void setup() {
OCROA = OXAF; o
TIMSK |= BV(OCIEOA);

myServol.attach(SERVO1PIN); (4]
myServol.write(90); (5)
delay(15); // wait 15 ms for servo to reach position

}

void loop() {
int potValue; // variable to read potentiometer
int servoPos; // variable to convert voltage on pot to servo position
potValue=analogRead (POTPIN); (6}
servoPos = map(potValue, 0, 1023, 0, 179);
myServol.write(servoPos); (7]
delay(15); // wait 15 ms for servo to reach position

}

volatile uint8_t counter = 0; // timer counter variable

SIGNAL(TIMERO _COMPA vect) { 3]
// this gets called every 2 milliseconds
counter += 2;
// every 20 milliseconds, refresh the servo!
if (counter >= 20) {
counter = 0;
myServol.refresh();
}
}

@ The servo control wire (usually orange) is connected to the Trinket on
this pin number (pin #0).

(2] The potentiometer center pin is connected to this pin (Trinket pin #2,
which is analog 1 on the ATtiny85).

82 Getting Started with Adafruit Trinket

http://bit.ly/GettingStartedWithTrinket
http://bit.ly/GettingStartedWithTrinket

® These two lines set up the interrupt that will refresh the servo every
20 milliseconds to keep it in the position desired.

O This calls the Servo library to identify that the servo is on SERVO1PIN
on the Trinket.

e Here, we set an initial position for the servo (the servo could be point-
ing anywhere when you first power it up).

(6] Here, we read the voltage on the potentiometer (analogRead returns a
value of 0 to 1023) and then map the value to a value of O to 179
degrees.

(7] This tells the servo to go to the desired position.

© The SIGNAL(TIMERO COMPA vect) function is the interrupt that is called
by the microcontroller every 2 milliseconds. The built-in millis timer
function keeps track of time, and when 20 milliseconds has elapsed,
this function will refresh the servo.

The code uses 1,678 bytes of the 5,310 maximum. This leaves a good
amount of room for user code (lights, robotics; the sky is the limit).

Use

As the potentiometer is turned, the servo will rotate from O to 180 degrees.
The potentiometer is used as a voltage divider, changing the voltage on the
middle pin from O to 5 volts through the sweep of the knob. This is read on
analog pin 1 (which is Trinket pin #2). The analogRead value is mapped (lin-
early interpolated) to a number from O to 179, and we send that to the
Servo library.

You can expand this circuit for a number of useful projects. You'll use the
Servo library again in Chapter 6.

Going Further

If you need to control more than two servos, you might consider a multi-
channel Pulse Width Modulation servo controller. Adafruit sells an |2C-
controlled model (#815) that controls 16 servos (chainable to a staggering
192 servos). To date, the library is not tested for Trinket. A larger microcon-
troller may be needed for some servo applications.

Analog feedback servos have an extra wire coming from the servo body.
This is connected to the position-sensing potentiometer to provide analog
information on where the servo is for your own use. A typical application is
having a user move an object while the microcontroller records the analog
values; then the program can play back those same movements. See
http://learn.adafruit.com/analog-feedback-servos for more information on
these specialized servos.

Intermediate Projects 83

http://learn.adafruit.com/analog-feedback-servos

Using I’'C—The Two-Wire Interface

Besides serial communication, Trinket is able to use the USI interface for
performing Inter-Integrated Circuit (12C) connectivity. I12C is also known by
the generic name Two-Wire Interface (TWI). I12C uses only two bidirectional
signal lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up
with resistors. You can communicate using typical voltages for Trinket (e.g.,
5 volts for Trinket 5V, 3.3 volts for Trinket 3V).

A communication channel is established between the controlling unit
(most often a microcontroller like Trinket), which is designated the master,
and a controlled object called the slave. The master is responsible for gen-
erating the Clock signal. Communication may be bidirectional, as both
master and slave can send and receive data.

You can connect multiple devices, as shown in Figure 5-20. Each slave
device has a fixed address. The master uses these addresses to select the
slave with which it wishes to establish communication. Older devices have
a 7-bit address, while newer devices have a 10-bit address. Even with the
older devices, 7 bits supports 128 devices, which is probably more than we
would ever load a Trinket with. The device manufacturers often either hard-
code an address in a device or allow you to select the address (from a limi-
ted range) by changing jumpers. If you wish to have many devices of the
same type (displays, sensors), you might be limited by the address selec-
tions the device manufacturers have provided.

Supply
?~E R EE oltage
SDA
J} . scL
Pin Pin 1 ? Fin 2$
. Slave Slave Slave
Ve Trinket ;
Dlspiay Sensor Sensor
Pin4 Pin 3

Figure 5-20. Typical I°C connections—you can connect different slaves to
the bus

The pull-up resistors (R) should have values between 2.2K and 10K ohms.
Depending on the circuit, the resistors may not be needed (some breakout
boards place the resistors in the circuit for the user). But if communication
issues arise, the lack of resistors is the most likely cause. Connect each [12C
line to a resistor, with the other end connected to the positive voltage line.

A number of useful devices, such as displays, memory, sensors, and more,
come with 12C interfaces. 12C provides a robust communication method
and only uses two digital pins. One limitation on the Trinket is that the two

84 Getting Started with Adafruit Trinket

pins must be pins #0 and #2 (as the software uses the ATtiny85 USI to
provide the communication hardware).

I’C Software

Larger Arduino compatibles communicate over the 12C bus using the Wire
library. This provides an intermediate layer of code so you don't need to
know the low-level details of sending and receiving I2C commands over the
hardware interface. Since the Trinket does not have dedicated I2C hard-
ware (using the USl instead), the standard Wire library doesn’t work. Fortu-
nately, there is an alternative Wire library for the ATtiny85: TinyWireM (the
M stands for master; there is also a TinyWireS library for slave communica-
tion). TinyWireM provides similar functionality for most projects requiring
12C connectivity via Wire function definitions.

Some code, either in third-party libraries or in sample programs, may
require changes to make calls to TinyWireM instead of Wire. Some libraries
make this switch in code transparently; other libraries are rewritten to use
TinyWireM. In a library file or program, you can make the change by defin-
ing the following lines:

#include <TinyWireM>
#define Wire TinyWireM

To edit a library file, it is easiest to use a text editing program navigate to
your library folder and open the library files, which often have file exten-
sions of .c (C source code), .cpp (C++ source code, often mostly consisting
of C code), and .h (header files, defining variables and drawing in other
code via #include statements like the one you just saw). If you were to
manually change all Wire calls to TinyWireM, you would need to edit the C
code files. If you use the #define Wire TinyWireM trick in a header file, you
may not need to edit the rest of the source. A great deal depends on how
the library authors implemented their code.

If you get errors similar to "'Wire' is not defined", then you have not
made all of the changes to use TinyWireM instead of Wire.

Using I°C Displays

The I12C bus on the Trinket allows the connection of text displays such as
those in Figure 5-21. You may grow tired of using a single blinking red LED
to provide status feedback for a program, or cringe at using a serial con-
nection back to your computer. Displays provide a logical way for stand-
alone projects to provide user information (and catch people’s eyes).

Intermediate Projects 85

Figure 5-21. Many different smart displays have I°C interfaces

Displays provide information from a projects’ hardware to the user. The
next project provides information from a temperature and humidity sensor
to the user via a display.

Displays may be subdivided into four groups: seven-segment LED numeric
displays, LED matrix displays, character displays (often 16 characters by 2
lines, but there are others), and graphical displays that use pixels to display
text and images. Most of these displays require many digital pins to control
their functions. Chip manufacturers have developed I12C driver chips that
allow for controlling the displays over the 12C bus, leaving the hard work to
the interface chip. Electronics companies such as Adafruit design and
build circuit boards, called backpacks, which contain the driver chip and
I2C connections, plus the connections to the display. This adds some cost,
but allows a small controller like Trinket to interface in the same way as a
larger microcontroller.

The main limitation on displays is buffering. Many displays require the
memory of the display contents to be handled by the microcontroller. This
is especially true of graphical displays. With only 512 bytes of RAM on the
Trinket, buffering graphical displays can be very difficult. If you are contem-
plating a design with a large, unbuffered LCD display and a Trinket, con-
sider using another microcontroller. But for many types of displays, the
Trinket provides the capability at the right price point.

Using an 12C display requires the TinyWireM library plus a library to provide
the low-level communication between the Wire protocol and the display
backpacks. As the driver chips on the backpacks may vary, check which
display-dependent library you need for the display used in your project.

Temperature and Humidity Sensing

Internet of Things (loT) projects often read sensors and report their data
to a monitoring display. Temperature and humidity sensors are common in
loT sensing. The DHT series of sensors allow for measuring both tempera-
ture and humidity in one package.

The next project (seen in Figure 5-22) provides environment sensing with a
DHT sensor. It may be built and placed in a very small enclosure, allowing
for environmental monitoring in many different scenarios. You can use the
code and concepts in a number of other projects.

86 Getting Started with Adafruit Trinket

https://learn.adafruit.com/dht/overview

Figure 5-22. The Temperature and Humidity project on the breadboard

Parts List

Trinket 5V, Adafruit #1501 or Maker Shed #MKADG69 (do not substi-
tute a Trinket 3V on this project)

12C character LCD backpack, Adafruit #292

Monochrome or color LCD display compatible with the LCD back-
pack, such as the Adafruit #181 monochrome or #398 or #399 color
displays

DHT22 temperature and humidity sensor, Adafruit #385 (you can
also consider the DHT11, Adafruit #386, with a change in the code).

Half breadboard, Adafruit #64, Maker Shed #MKKN2, or similar (full
breadboard just fine)

Breadboard wires, Adafruit #153, Maker Shed #MKSEEED3, or similar
5V power supply, Adafruit #276 or similar
Female 2.1/5.5 mm DC power connector, Adafruit #368

Intermediate Projects 87

* 1,000-ohm resistor—the DHT22 comes with a 10K-ohm pull-up resis-
tor, but this is too weak for use on Trinket pin #1, so you will not use it
unless you decide to change the circuit

Libraries

We'll use the following libraries to communicate with these components
(see “ATtiny-Optimized Libraries” on page 39 for library locations and
“Installing Libraries” on page 41 for instructions on installing libraries):

+ TinyWireM library (for 12C communication)
+ TinyLiquidCrystal library
» TinyDHT library

The TinyLiquidCrystal library is the Adafruit LiquidCrystal library with
additional support for one of the display driver chips, along with use of
TinyWireM instead of the Wire library. The TinyDHT library is special. The
Adafruit DHT library uses floating-point (decimal) math, which loads more
code than the Trinket can handle. To save space, TinyDHT uses integer
math, resulting in return values that are rounded to the nearest integer.
Note the Arduino LiquidCrystal library is not used for Trinket. For Adafruit
displays, it is best to check their thorough tutorials for library
requirements.

The LCD Display

Adafruit carries many character LCD display varieties with multiple sizes
and backlight colors. The backpack used in this build has 16 characters per
line, with two lines.

The Adafruit 12C/SPI character LCD backpack, as shown in Figure 5-23,
lets you control these displays by sending data over the two-wire I1C inter-
face. Standard LCDs require a large number of digital pins, straining the
capability of even an Arduino Uno. Use of the I12C backpack considerably
reduces the number of pins needed.

88 Getting Started with Adafruit Trinket

https://learn.adafruit.com/

Figure 5-23. The Adafruit I°C backpack soldered to a 16x2 display

You must assemble the 12C backpack according to the instructions on the
Adafruit website. The backpack is then placed on the back of the display.

For color displays, there are three backlight connection pins: display pins
16, 17, and 18 control the three color backlights. If you connect pin 16 from
the backpack to pin 16 on the display, the 12C controls will adjust the red
light. You can place a jumper from one or more of the backlight pins to the
backpack's pin 16, and the software will vary the colors you've connected
with a jumper. You should make your color choice before soldering on the
backpack. Alternatively, rather than a color display, you can choose a
“classic” blue and white 16x2 LCD. The monochrome display only has one
backlight control pin, making it more straightforward to control.

Once you know which pins are needed for the backlight, solder the back-
pack to the display. The completed display is connected to the project per
the wiring diagram in Figure 5-24. To be sure the project has enough
power, use an external 5-volt supply. It must supply at least an ampere
(1,000 mA). Wire the DAT pin on the backpack to Trinket pin #0 and the
CLK pin to Trinket pin #2. Connect the backpack 5V to the project com-
mon 5V power bus and GND to ground.

Intermediate Projects 89

http://learn.adafruit.com/i2c-spi-lcd-backpack/assembly
http://learn.adafruit.com/i2c-spi-lcd-backpack/assembly

12C / SPI
LCD backpack

Made with [Fritzing.org

Figure 5-24. The Temperature and Humidity wiring diagram

Testing the Display

To test the LCD, use the Hello World sketch in Example 5-5 (also available
in the repository for this book, directory Chapter 5 Code, subdirectory
Chapter5_06DisplayTest). It is important to test the display before adding
the sensor to isolate any errors up to this point in the project.

Example b-5. I?C display test program
/* Test sketch for Adafruit I2C/SPI LCD backpack and a character display */

#include <TinyWireM.h> (1]
#include <TinylLiquidCrystal.h>

TinylLiquidCrystal lcd(0); (2}

90 Getting Started with Adafruit Trinket

http://bit.ly/GettingStartedWithTrinket

void setup() {
lcd.begin(16, 2); [3)
lcd.setBacklight (HIGH);
lcd.print("hello, world!");

void loop() { o
lcd.setCursor(o, 1);

lcd.print(millis()/1000); // print the number of seconds since reset

(1] Include the Wire library for the ATtiny85 and the display libraries.

® Call the display library, default I2C address #0 (backpack pads AO-
A2 not jumpered). If the address is different, change the number to
the correct address.

©® The display is initialized as a 2-line, 16-character display (change to
suit your display as needed), then the backlight is turned on, and the
message is written to the first line.

0 Setthecursorto column O, line 1 (note: line 1is the second row, since
counting begins with 0).

Before running the test program, be sure both the TinyWireM and Adafruit
TinyLiquidCrystal libraries are installed (as described in “Installing Libra-
ries” on page 41. If there are errors indicating that the library or function
code cannot be found, be sure to review Chapter 4 on where to locate libra-
ries and be sure the names of the directories match up with the library
names.

Adjustment

When the code is running, text should be on the display. If there is no text,
your first adjustment should be to the small silver potentiometer on the
rear of the backpack. Adjust this potentiometer with a small screwdriver
until the intensity of the text is readable.

If the text is still not displaying and the backlight is off, check the wiring
from the backpack to the breadboard, check power (is the Trinket's power
LED on?), then check the soldering on the backpack to ensure all connec-
tions are correct.

Sensing

Once the display is working with the Trinket, you can expand the project.
Next, we'll add a temperature sensor (Figure 5-25).

Intermediate Projects 91

Figure 5-25. The DHTI11 and DHT22 sensors

Connect the DHT22 to power and ground, as shown in Figure 5-24. The
DHT22's digital data line connects to Trinket pin #1. The sensor is designed
such that the data pin must be pulled high via an external resistor.

Using Trinket pin #1 for a signal input requires a different pull-up resistor
value than the 10K-ohm resistor that comes with the sensor from Adafruit.
Because of the Trinket's onboard 470-ohm resistor/LED on pin #1, you
need a lower resistance value to “pull more strongly” (provide a more bal-
anced voltage divider). If there are signal strength issues with the digital
pin, make sure the sensor data line has adequate pull-up. Pin 3 on the sen-
sor may be ignored; it is not used.

Remember to program your Trinket out of circuit because its
communication pins are shared with data pins.

The DHT22 provides a 0-100% humidity reading with 2-5% accuracy and
-40 to 80°C temperature readings with ffl0.5°C accuracy. More detailed
specifications and use documentation may be found at http:/
learn.adafruit.com/dht.

To get the timing correct on the DHT sensor, the Trinket is clocked to 16
MHz (the same as the Arduino Uno) in the first line in the setup routine.
This requires the 5V Trinket, as the 3V Trinket is not guaranteed to function
at 16 MHz.

92 Getting Started with Adafruit Trinket

http://learn.adafruit.com/dht
http://learn.adafruit.com/dht

Change your board type in the Arduino IDE to Trinket 5V 16
MHz before compiling (via the Tools—Board menu item).

Code

The code for this project is in Example 5-6 and can be downloaded from
the repository for this book, (directory Chapter 5 Code, subdirectory Chap-
ter5_07DHT).

Example 5-6. Code for the Temperature and Humidity
Sensing project with I2C display

/* Trinket I2C Display and DHT Sensor Sketch */

#include <TinyWireM.h> // Wire/I2C library for Trinket @
#include <TinylLiquidCrystal.h> // LiquidCrystal using TinyWireM
#include <TinyDHT.h> // Lightweight DHT sensor library

#include <avr/power.h> // Needed to up clock to 16 MHz on 5v Trinket

#define DHTTYPE DHT22 // DHT 22 (AM2302) @
#define TEMPTYPE 1 3]
#define DHTPIN 1 // The sensor is connected to pin #1

DHT dht(DHTPIN, DHTTYPE); @
TinylLiquidCrystal lcd(0); @

void setup() {
if (F_CPU == 16000000) clock prescale set(clock div 1); @
dht.begin(); // Start temperature sensor
lcd.begin(16, 2);
lcd.setBacklight (HIGH);

}

void loop() {
int8 t h = dht.readHumidity(); (s}
int16_t t = dht.readTemperature(TEMPTYPE);

lcd.setCursor(o, 0);

if (t==BADTEMP || h == BAD HIM) { @
lcd.print("Bad read on DHT"); @

} else {
lcd.print("Humidity: "); // Write values to LCD
lcd.setCursor(10, 0); lecd.print(h);
lcd.setCursor(12, 0); led.print(" % ");
lcd.setCursor(0, 1); led.print("Temp:");
lcd.setCursor(7, 1); led.print(t);
lcd.setCursor(10, 1); lecd.print("*F");

delay(2000); // Read values every 2 seconds (2000 milliseconds) @

Intermediate Projects 93

http://bit.ly/GettingStartedWithTrinket

@ Loadthe libraries needed for the program.

® The sensor type can be defined as DHT11, DHT21, or DHT22. Set it for
the one you are using.

(5] Define the variable for temperature scale: 1 for Fahrenheit, o for Cel-
sius.

o Initialize the temperature sensor data structure.

@ Initialize the display connected via I2C, default address O (backpack
pins AO—A2 not jumpered)

@ This special line sets the Trinket to run at 16 MHz.
(7] Define the display as 2 rows, 16 columns, and turn on the backlight.

(5] Read the humidity, then the temperature (note that the data sizes are
different).

O The file TinyDHT.h defines the values for the variables that tell you
when the sensor is reading funky values.

® If an error value is returned, display it on the LCD; otherwise, print
the humidity and temperature on the display.

® The sensor does not like reads faster than once every two seconds,
per the datasheet, so this line puts a delay in between each read.

The sketch compiles to 4,880 bytes of the 5,310 available. This leaves only
440 bytes of code for any additional functionality. Note that adding more
display text will use the available space quickly. If you need decimal
(floating-point) numbers, it will most likely exceed the code space avail-
able. The Arduino library functions to do floating-point math add up to
2,000 bytes of code. This is why the DHT library was forked to create the
TinyDHT library—it uses integer math, which limits precision to one degree
and one percent, but saves space.

How It Works

A couple of new concepts are introduced in this sketch. This is the first
time in the book you've clocked a Trinket 5V up to 16 MHz (see the upcom-
ing sidebar, “Running Trinket at 16 MHz" on page 96). The setup routine
clocks the Trinket 5V up to 16 MHz, then initializes the sensor and display.
The loop function reads the temperature and humidity and, if the values
are valid, the sketch reports them on the LCD.

The red LED will probably glow softly as the digital sensor data flows into
pin #1. This should not cause any problems.

You can heat up the sensor or cool it off to observe resulting temperature
changes. For permanent use, select a weatherproof, sturdy enclosure and

94 Getting Started with Adafruit Trinket

https://learn.adafruit.com/dht

do not expose the display to moisture. Consider a box such as Adafruit
#903 or #341 and keep the display indoors.

Troubleshooting

If you get no display, go to the Hello World I2C sketch (in “Testing the
Display” on page 90) and ensure that the display works.

If you have no display running Hello World on the 12C backpack, use
the contrast knob to change the LCD display contrast to a readable
level. If you decided to use an external potentiometer to change con-
trast per the assembly instructions and not pin 16 on the backpack,
use that.

If you get a Bad Read on DHT error, the sensor is not talking to the Trin-
ket correctly. Check the wiring and ensure there is a 1,000-ohm resis-
tor from Trinket pin #1 to 5V. If you have an oscilloscope, you can look
at the signal on pin #1 to ensure good high to low transitions given the
1K pull-up and the onboard LED. Try using a 10K-ohm pull-up resistor
on pin #4, or wire the DHT signal line to Pin 4 and change the value of
DHTPIN to 4. If you use pin #3 or #4, disconnect the wiring on the pin
before you upload code, after which you can reconnect the wires.

If you get 0% Humidity and 32 degrees F/ zero C, ensure Trinket 5V
16 MHz is selected as the Board type in the Arduino IDE Tools menu.
The sensor code will not give correct readings on a Trinket 3V or at
8 MHz.

Going Further

There are many temperature sensors that work well with Trinket and other
Arduino compatible projects. Many sensor programs use floating point
math, which is bulky on a Trinket but possible. This includes the TMP36
(Adafruit #165), a popular, low-cost sensor that uses one analog pin. Ada-
fruit released a temperature breakout board in 2014, the MCP9808 (Ada-
fruit #1782), which uses I12C. The Adafruit library to use the 9808 is written
for larger Arduinos, but changing the Wire calls to TinyWireM would appear
to make it Trinket- and Gemma-compatible. 12C has the bonus that the bus
lines may be shared with a display and not take additional data pins.

Intermediate Projects 95

Running Trinket at 16 MHz

The Trinket 3V will only run at a clock speed of 8 Megahertz (MHz)—opera-
tion outside that range is not guaranteed by Adafruit or Atmel. The Trinket
5V is rated to run at a speed of 8 MHz with no code changes, or 16 MHz
with a change in code. At 16 MHz, it runs twice as fast, which may be nec-
essary for some critical timing code. More likely, sketches written for the 16
MHz Arduino Uno and similar boards may not run at a different clock rate.
The DHT library was written for 16 MHz and the TinyDHT library was left
unchanged in that respect, so you need to use 16 MHz with the DHT
sensor.

A few code changes are required to have the Trinket 5V run at 16 MHz.
First, you need to include the avr/power.h file that is standard with the
Arduino IDE in the avr directory. This defines the value F_CPU. Then you
need to add an additional line of code at the very beginning of the setup
routine to change the speed using the clock_prescale_set function:

#include <avr/power.h> // needed for 16 MHz on 5v Trinket

// first line in setup sets a 5V Trinket to 16 MHz operation
void setup() {

if (F_CPU == 16000000) clock prescale set(clock div 1);

// additional setup code may follow
}

No hardware modifications are required and no jumpers need to be set
(handy as the Trinket has no hardware jumpers).

For most projects, the default 8 MHz is plenty fast enough (8 million clocks
per second!), but if there is a need for speed, the speed is easily doubled
with this bit of code. Just ensure the external project circuitry (sensors,
displays, time-sensitive components) is expecting such speeds.

Ultrasonic Rangefinding

A Trinket with a display makes an excellent basis for many sensor projects.
Pairing a Trinket and a display with a Maxbotix ultrasonic rangefinder,
shown in Figure 5-26, creates a handy circuit. Maxbotix makes a wide
range of sensors with differing sensing (beam) patterns and sensitivities;
these are highly suitable for robotics, proximity sensing, and alarm
systems.

The rangefinder reports the distance between the sensor and another solid
object. It is commonly used in automobiles and robots for measuring the
distance to an object like a wall. You can also use a rangefinder to find dis-
tances in rooms or in alarm systems. This project provides a basic distance
sensor that you can use for most of these functions.

96 Getting Started with Adafruit Trinket

Figure 5-26. Maxbotix ultrasonic sensor

Parts List

+ Trinket 5V, Adafruit #1501 or Maker Shed #MKAD69
+ |2C character LCD backpack, Adafruit #292

* One monochrome or color LCD display compatible with the LCD
backpack, such as the Adafruit #181 monochrome or #398 or #399
color displays

» Maxbotix ultrasonic sensor (LV-EZ1 selected, Adafruit #172)

» Half breadboard, Adafruit #64, Maker Shed #MKKNZ2, or similar (a
full breadboard is fine also)

+ Breadboard wires, Adafruit #153, Maker Shed #MKSEEED3, or similar
+ 5V power supply, Adafruit #276 or similar
+ Female 2.1/5.5 mm DC power connector, Adafruit #368

Build

If you have built the previous Temperature and Humidity project, you can
remove the sensor and the wires that connect the sensor to the Trinket. If
you have not built the display, refer to the Temperature and Humidity
project for assembly and test instructions. When this is done, you can add
the ultrasonic sensor per the wiring diagram in Figure 5-27. Figure 5-28
shows the project built on a breadboard.

Intermediate Projects 97

12C / SPI
LCD backpack

Made with) Fritzing.org
Figure 5-27. Wiring diagram for the ultrasonic sensor project

Solder the Adafruit-supplied piece of header onto the sensor so it can be
easily plugged into the breadboard. Connect the power and ground wires,
along with a wire from the Maxbotix PW pin to Trinket pin #1.

The Maxbotix has a number of ways it can provide data. It can output serial
data at the level of its power supply (TTL or V¢ level). It can also output an
analog voltage proportional to the detection range. Finally, the sensor can
send a pulse width signal with a scale factor of 147 microseconds per inch.
The first two methods would have been suitable, but it is the pulse width
method that turns out to be the simplest to use, translating to the least
program space consumed. You'll measure the pulse width with the Arduino
pulseIn function.

98 Getting Started with Adafruit Trinket

Figure 5-28. Breadboard view of the ultrasonic sensor on Trinket

To review the capabilities of this sensor, consult the datasheet on the Max-
botix website.

Libraries

You'll use the same TinyWireM and TinyLiquidCrystal libraries you used in
the previous project for displaying the distance.

Code

/ Change your board type in the Arduino IDE to Trinket 5V 8
MHz before compiling (Tools—Board). If you built the Tem-
perature and Humidity project, the IDE may still be set at
Trinket 5V 16 MHz.

The project code is in Example 5-7 and can be downloaded from the reposi-
tory for this book, (directory Chapter 5 Code, subdirectory Chap-
ter5_08Ultrasonic).

Intermediate Projects 99

http://www.maxbotix.com/documents/MB1010_Datasheet.pdf
http://www.maxbotix.com/documents/MB1010_Datasheet.pdf
http://bit.ly/GettingStartedWithTrinket
http://bit.ly/GettingStartedWithTrinket

Example 5-7. The Trinket Ultrasonic Rangefinder
sketch

/* Trinket Ultrasonic Rangefinder Sketch */

#include <TinyWireM.h> (1]
#include <TinylLiquidCrystal.h>
#define EZ1ipin 1 (2]

TinylLiquidCrystal lcd(0); (3]

int8_t arraysize = 9; @
uint16_t rangevalue[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint16_t modE; // calculate mode (most common) distance

void setup() {
pinMode(EZ1pin, INPUT); // set ultrasonic sensor pin as input
lcd.begin(16, 2); (5)
lcd.setBacklight (HIGH);

}

void loop() {
int16_t pulse; // number of pulses from sensor
int i=0;

while(i < arraysize)
{ pulse = pulseIn(EZipin, HIGH); // read in time for pin to transition
rangevalue[i]=pulse/58; // pulses to centimeters
// (use 147 for inches)
if(rangevalue[i] >= 15 8& rangevalue[i] < 645) i++; @
delay(10); // wait between samples

isort(rangevalue,arraysize); // sort samples
modE = mode(rangevalue,arraysize); // get median, the value desired

led.setCursor(0,0); lcd.print("Range: "); (7)
lcd.setCursor(7,0); led.print(” ");
lcd.setCursor(7,0); lcd.print(modE);
led.setCursor(11,0); led.print("cm");

delay(500); // read every half second
}

void isort(uint16_t *a, int8 t n) { (s
for (int i = 1; i < n; ++1) {
uint16_t j = a[i];
int k;
for (k =i - 1; (k»>=0) & (j < a[k]); k--) {
alk + 1] = a[k];

}
alk + 1] = 3;

}
}

uint16_t mode(uint16_t *x,int n) { (o)

100 Getting Started with Adafruit Trinket

® ©6 o0 60 o —

© ©

int i = 0;

int count = 0;

int maxCount = 0;
uint16_t mode = 0;
int bimodal;

int prevCount = 0;

while(i<(n-1)) {
prevCount=count;
count=0;
while(x[i]==x[i+1]) {
count++;
i++;

}
if(count > prevCount & count > maxCount) {
mode=x[1];
maxCount=count;
bimodal=0;
}
if(count == 0) {
i++;
}

if(count == maxCount) { //if the dataset has 2 or more modes
bimodal=1;

if(mode==0 || bimodal==1) { // return median if there is no mode
mode=x[(n/2)1;
}

return mode;

Include the libraries needed (the Maxbotix does not need a library).
The sensor is on Trinket pin #1.
The display is on the I12C pins, address O (AO-A2 not jumpered).

Define the number of values to calculate the median (sample size,
which needs to be an odd number).

Set up the LCD: specify the number of rows and columns, and set the
backlight on.

Ensure the value obtained is in range; if so, save the value.
Write the distance to the LCD display via the attached 12C backpack.

This is a sorting function; this code is provided for free use on http:/
playground.arduino.cc/Main/MaxSonar by Bruce Allen and Bill
Gentles.

Mode function, returning the mode (most common value) or median
(middle value) if it can't determine a mode.

Intermediate Projects 101

http://playground.arduino.cc/Main/MaxSonar
http://playground.arduino.cc/Main/MaxSonar

This code compiles to 4,522 bytes of 5,310 available. This leaves almost
800 bytes of code for additional functionality. Using decimal (floating-
point) numbers will most likely exceed the program space available.

How It Works

The Arduino IDE function pulseln is perfect for the project, as it returns the
pulse width on a pin without requiring much code. This avoids the need for
a Serial library or an analog pin. The extra code space afforded by the pul-
seln function is helpful, as Maxbotix recommends taking several readings
and finding the mathematical mode of the data set. The code as written
takes nine samples, sorts the values, and finds the mode, which is then dis-
played on the LCD. The distance is calculated in centimeters by dividing
the pulse width by 52 (you can use 147 to obtain the distance in inches).

Troubleshooting

+ If you get no display, go to the Hello World 12C sketch (see “Testing the
Display” on page 90) and ensure that the display works.

+ If you have no display running Hello World on the 12C backpack, use
the contrast knob to change the LCD display contrast to a readable
level. If you decided on an external potentiometer to change contrast
and not pin 16 on the backpack, use that.

+ If you get no reading of distance, check your wiring from Trinket pin
#1 to the PW pin on the Maxbotix sensor and verify that the sensor
has its 5V and ground pins connected.

» Make sure you selected Trinket 5V 8 MHz as the board type in the
Arduino IDE Tools menu (the temperature sensor sketch used 16
MHz).

Communicating via Serial

In preparation for the final project in the chapter, this section will introduce
you to serial communication for Trinket. Serial communication is very use-
ful in providing project status to a connected computer (like your program-
ming computer), or to communicate between projects. It's often used only
temporarily, to provide information on what a program is doing while
debugging. It is well worth diving into how serial communication can bene-
fit your projects.

The serial port is by far the oldest protocol supported on the ATtiny. It has
its roots in the RS-232 standard from 1962. With modern microcontrollers,
serial interfaces most often operate at the supply voltage of the processor
(often called “TTL levels™), and not the higher voltage levels required of

102 Getting Started with Adafruit Trinket

RS-232. So, the Trinket 5V would operate at 5-volt signal levels, and the
Trinket 3V at 3.3 volts.

The serial signals are interfaced with three wires: a send line (transmit, or
TX), a receive line (RX), and signal ground. With this wiring, data may be
sent and received at the same time. Additional benefits are that serial com-
munication is well understood by the community, uses few data pins, and
is implemented on many types of hardware. If you only need to send or
receive data, the number of lines can be reduced to two.

A final benefit is that it is easy to interface via serial to larger computers
with adapters. One of the most common interface methods is using serial-
to-USB chips such as the Adafruit FTDI Friend and similar boards.

The Adafruit FTDI Friend

One specific serial-to-USB interface is the FTDI Friend (Figure 5-29). It
uses a popular integrated circuit manufactured by FTDI.

Figure 5-29. The Adafruit FTDI Friend TTL serial-to-USB board

You connect the TX designated pin on your Trinket project to the RX pin on
the FTDI Friend, and the RX designated pin on your project to the Friend's
TX. This crossover conveys the data to the correct pins. You connect the
Friend to a computer USB port via a USB male Mini B to Male A cable, as
shown in Figure 5-30.

This type of capability also comes in a cable form with the FTDI chip
embedded in the USB cable. The functionality is the same. Be aware there
are 3.3- and 5-volt signal versions: do not use the 5-volt-only version with a
Trinket 3V unless the device is rated for 3.3-volt systems.

Be sure you connect the GND pin on the Trinket to GND on the FTDI Friend.
You do not need to connect the Friend's V¢ pin to the Trinket circuit. The
board draws power from the USB connection.

Intermediate Projects 103

http://www.ftdichip.com/

Talking Serial

Most Arduino code you will see uses the Serial library included with the
Arduino IDE. Since the Trinket and its ATtiny85 communicate via methods
different from other Arduino compatibles, you cannot use the Serial library.
More popular with Trinket is the SoftwareSerial library. Developed for larger
Arduino-compatible processors, the library works very well with Trinket.
Rather than using USI hardware, the library uses bit-banging, toggling digi-
tal pins at specific rates to implement a protocol in software. The benefitis
that the transmit and receive pins may be any of the five data pins on the
Trinket. The same functions found in Serial are in SoftwareSerial, so you
can use the code with few changes.

Exploring Serial Use

To become familiar with serial communication, you'll interface an FTDI
Friend with a Trinket. A Trinket sketch establishes a serial connection
through the FTDI Friend to a computer USB port. This test will power the
Trinket from the FTDI Friend to make connections easier. Figure 5-30
shows the circuit.

Note: Red wire is not needed
when powering a circuit from
a normal circuit battery/power

LI T I
LI I I
a4 e 80
LI
LI T I
LI I I
- 4 8 8 s
e e
LI

LI A)
LI A)
e s 8
LI)
LI)
LI A)
LI I |
“ e e o8
LI)

Made with [B) Fritzing.org

Figure 5-30. Connecting a serial monitor to Trinket

Parts List

« Trinket BV, Adafruit #1501 or Maker Shed #MKADG9

FTDI Friend, Adafruit #284 or Maker Shed #MKAD?22 (alternate is an
FTDI cable, Adafruit #70)

+ Mini breadboard
» Aterminal program on your programming PC
« USB cables

104 Getting Started with Adafruit Trinket

Code

The code for connecting a Trinket to an FTDI Friend is in Example 5-8 and
can be downloaded from the repository for this book (directory Chapter 5
Code, subdirectory Chapter5_04Serial).

Example 5-8. Software serial echo program
/* Trinket Software Serial Echo Program */

#include <SoftwareSerial.h> // Use the Arduino IDE library
#include <ctype.h> (1]

SoftwareSerial Serial(2,0); @
#define LED 1 (3]

void setup(void) {
Serial.begin(9600); @
Serial.println("Hello from Trinket"); // Verify comms working
Serial.println(" ");
Serial.println("Type text and I will echo it back");
Serial.println("Any time I see a number, I will flash the LED");
Serial.println(" ");
pinMode(LED, OUTPUT); // Red LED pin

}
void loop(void) { ()
char c;
if (Serial.available()) { // Has something been received?

c = Serial.read(); // VYes, read it
Serial.write(toupper(c)); // Write it back out
if(c >= '0" and c <= '9") flash(); // If a number, flash the LED
}
}

void flash() {
digitalWrite(LED, HIGH); (6]
delay(500);
digitalWrite(LED, LOW);

@ Thisisthe standard C library for character functions.

2] Define a software serial connection. The pin order is important: first
is the receive pin 2 (abbreviated RX), and second the transmit pin O
(TX). Both values are required. If you want to only send, use the
SendOnlySoftwareSerial library.

(5] The program uses the Trinket onboard LED on pin #1.

(4] Start the serial connection—be sure you set up the computer termi-
nal program for 9,600 baud, 8 bits, 1 stop bit, no parity (a fairly stan-
dard set of values).

Intermediate Projects 105

http://bit.ly/GettingStartedWithTrinket

e If you type a character on the computer, it is changed to upper-case
and sent back to you. If you type a number, the LED flashes.

(6) This function flashes the LED for half a second as an indicator.

Use

For this project, you will need to download and run a terminal program on
your programming PC. This type of program provides a blank screen in
which serial data can be sent and received. It stems from old terminals
used on mainframe computers, but is still very useful today for talking with
microcontrollers.

For Windows, PuTTY is a free program that's widely used. Linux and Mac
users may use the Terminal program that comes with the operating sys-
tem. Set up the communication parameters for 9,600 baud, 8 data bits, 1
stop bit, and no parity. The PuTTy configuration screen is shown in
Figure 5-31.

/ For Linux and Mac, the operating system also has other ter-
minal programs used with a shell. You can use screen, and
should specify the port and baud rate, as in screen /dev/
tty.usbmodem 9600.

You may need to find the serial port used by your programming computer,
which you can do by looking at your device list before and after plugging in
the FTDI Friend USB cable. In Windows, go to Control Panel—Devices and
Printers, right-click the FTDI device, and look on the Hardware tab to see
which COM port is being used; then configure PUTTY to use that port.

On Mac or Linux, use the 1s command to view the list of device files (before
and after plugging in the FTDI Friend USB cable) starting with tty., as in:

1s /dev/tty.*

Limor Fried suggests that for a terminal monitor (which works on any oper-
ating system the Arduino IDE works on), you can open another copy of the
Arduino IDE in addition to the main one you are using. Select Tools— Serial
Port to select the port the FTDI Friend is located on. Then Use
Tools—Serial Monitor as your monitor. You might be thinking, “Why not
use the current Arduino IDE serial monitor?” The IDE is simple in many
respects, port handling included. The IDE window you are using will not
work with the Trinket because a Trinket does not have serial onboard, like
an Uno. So, another terminal communication program is needed to do the
receiving for our use. It seems like a great deal of bother, but after setup, it
works rather well.

106 Getting Started with Adafruit Trinket

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

i @ PuTTY Configuration ﬁ1

Category:

2- Sgssion Basic options for your PuTTY session

D TE"" I_.oglging gawieib e destination you want to connedt
Tnlé;:board Senial line Speed
o comt 9600

6

- Features Connection type:
- Window () Raw () Telnet () Rlogin () SSH -
J;EE:::::_CE Load, save or delete a stored session
... Translation Saved Sessions
- Selection
- Colours :
Default Settings
[=I- Connection [ﬂ]
. Proxy
- Rlogin
(- S5H
- Seial Close window on exit:
() Aways (7)) Never @) Only on clean exit
About [COpen] [Cancel

Figure 5-31. The PuTTY configuration screen

With a terminal program or monitor, you will get a blank window with a cur-
sor; this is normal.

If the configuration is correct, as you type characters on your keyboard,
the Trinket will echo them back. If you type in lowercase, the program con-
verts such characters to uppercase. If you type a number key, the Trinket's
onboard red LED will also flash briefly. If you do not get characters, check
your software settings to be sure the right serial port and baud rate (9600)
are set. Once you get the FTDI Friend and the computer handshaking
(speaking the agreed-to protocol), things will work well.

In the example code, the SoftwareSerial object was called Serial. Most
code for other Arduino compatibles defines the primary serial port as
Serial also. Do not think that this is 100% the same. A serial connection is
made via SoftwareSerial on the FTDI Friend and not the Trinket USB port.

An external serial connection is helpful for display and debugging. It also
allows reuse of example code that assumes the Serial object is present.
Debugging via serial can be very helpful. When you're done, you can
remove the serial code for final operation to make it run faster with less
code space used.

You can use any of the Trinket's five data pins for serial communication
(the technical reason is that the ATtiny85 supports change interrupts on all
data pins). This means the ATtiny can react to changes to its pins and jump
to the code that reacts to those changes. Be careful on some pins, though

Intermediate Projects 107

—as the pin diagram in “Connectivity” on page 5 shows, some pins have
external hardware that could affect some serial connections. And as
always, if you use Trinket pins #3 and/or #4, disconnect the connections
to these pins to upload code, then reconnect them afterward. Using Trinket
pins #3 and #4 may be helpful when you need pins #0 and #2 for 12C com-
munication, as discussed elsewhere in this chapter.

For your own circuits, you will not power the Trinket from the FTDI Friend.
You won't need the red wire in such cases, although the black wire is
needed to establish the ground connection.

Other types of communication hardware you may wish to interface to Trin-
ket can also use the serial protocol. This includes many Bluetooth radio
modules. You'll learn about Bluetooth in Chapter 6.

Going Further

There are many serial functions available in the Serial library—see http://
arduino.cc/en/Reference/SoftwareSerial for a complete list and how they
are used.

If you're only sending Trinket data outward, the SendOnlySoftwareSerial
library may do the job with less code space used. It is available from author
Nick Gammon under a Free Software Foundation license at http./
gammon.com.au/Arduino/SendOnlySoftwareSerial.zip. Unzip the code and
place the entire code bundle in your Arduino Libraries folder, as described
in “Installing Libraries” on page 41.

Pulse Width Modulation

Pulse Width Modulation (PWM) is a method used in communication and
other circuits. It is so useful that most microcontrollers have hardware to
provide PWM signals on some of their pins. On the Arduino Uno, for exam-
ple, digital pins 3, 5, 6, 9, 10, and 11 all are PWM-capable (marked on the
board with a ~ symbol next to the pin number). For the Trinket, pins #0, #1,
and #4 can provide hardware PWM.

The Arduino IDE has a function to initiate a PWM signal on a pin, called
analogWrite (this is a bit of a misnomer, since you're only approximating an
analog signal with a square wave on a digital pin). The frequency of the
PWM signal on most pins is approximately 490 Hz. Pins 5 and 6 on the Uno
(and pins 3 and 11 on the Leonardo) have a frequency of approximately
980 Hz. For the Trinket, PWM via analoghirite works on pins #0 and #1.
The call to the function is:

analogWrite(pin, duty);

108 Getting Started with Adafruit Trinket

http://arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Reference/SoftwareSerial
http://gammon.com.au/Arduino/SendOnlySoftwareSerial.zip
http://gammon.com.au/Arduino/SendOnlySoftwareSerial.zip

where pin is the PWM-capable digital pin to write to and duty is the duty
cycle.

The duty cycle is defined as a value between 0 (always off) and 255 (always
on). A value of 128 is 50%, which is half on and half off every period.
Figure 5-32 shows various duty cycles for a PWM pulse stream.

Supply Voltage

3.3 or 5.volt level 51=20% 128=50% 204 =80% 255=100%
0=0% |—|_|_|_] U 0-volt level
| 31 1 L d L..eenn..
One Cycle One Cycle One Cycle

Figure 5-32. Pulse Width Modulation duty cycles

The frequency (cycles per second) remains the same, yet at first there is a
duty cycle of 0%, then 20% (a value of 51 to analogrite), 50% (128), 80%
(204), and finally 100% (255). The pulse height is the supply voltage (3.3
volts for Trinket 3V, 5 volts for Trinket 5V). You would not normally change
the PWM value as rapidly as shown in the figure (from nothing to full), but
this makes it easier to visualize.

Pulses through an analog meter can vary the reading on the meter propor-
tional to pulse width. PWM may also be used for dimming LEDs or other
uses.

In early versions of the Adafruit-supplied IDE, PWM on Trinket pin #4 could
not be initiated by analogWrite, which uses the ATtiny Timer O for pins #0
and #1. You may use extra code to set up PWM on pin #4 using Timer 1.
The required functions are in Example 5-9 (also available in the repository
for this book, directory Chapter 5 Code, subdirectory Chap-
ter5_10Pin4PWM).

Example 5-9. Functions to set up and use PWM on
Trinket pin #4

void PWM4_init() { // call this function in setup
// set up PWM on Trinket pin #4 using Timer 1

TCCR1 = BV (CS10); // no prescaler

GTCCR = BV (COM1B1) | _BV (PWMiB); // clear OCiB on compare
OCR1B = 127; // initialize duty cycle to 50%
OCR1C = 255; // frequency

}

// function to use an analogWrite-type function for Trinket pin #4
void analogWrite4(uint8_t duty value) {
OCR1B = duty value; // duty may be 0 to 255 (0 to 100%)

}

Intermediate Projects 109

http://bit.ly/GettingStartedWithTrinket
http://bit.ly/GettingStartedWithTrinket

If you use another library that needs the ATtiny Timer 1, this PWM function
will overwrite that functionality, and probably cause the other library to not
work.

The Analog Meter Clock

Trinket pairs nicely with a real-time clock module to keep time. Using the
12C bus lets you use a real-time clock module along with a display. Once the
time is known, you can display it in many different forms. A different take
on displaying the time is shown in Figure 5-33. The concept is to display
the time using analog panel meters with the scales changed to display the
time: one meter for hours, another for minutes.

7 MINUTES /

2

Figure 5-33. The mounted analog meter clock

How the clock is packaged is where you get to be creative. The design here
uses an open box, lending a modern, floating look. Other designs have
been posted on Google+, including a steampunk copper version that is
beautiful.

Circuit Design

This project interfaces the Trinket to the Adafruit DS1307 real-time clock
(RTC) breakout board. The time is output to two meters that provide

110 Getting Started with Adafruit Trinket

https://plus.google.com/111310175276865788693/posts/ipimrjna9mq

readings based on the voltage present on their inputs. The common
method for a microcontroller to output a varying voltage is through the use
of a digital to analog converter. The Trinket uses another method of provid-
ing a varying voltage, via Pulse Width Modulation (PWM) on three of its
pins. The meter uses a moving coil inductance movement. The coil acts to
average the voltage of pulses sent through it. If the pulses are narrow, the
average voltage the meter sees is lower, and in proportion the current is
lower for the fixed resistance attached to it. For wide pulses, the meter
sees nearly the supply voltage (and proportionally full current) and will
stay about full scale. This circuit varies the pulse width sent to the meters
proportionally to the hour of the day and the minutes after the hour.

For two meters, two of the three Trinket PWM pins are used (pins #1 and
#4). The Trinket's third PWM pin (pin #0) is also an I2C pin required for
connection to the clock module, so it is unavailable for display use.

Parts List

+ Trinket 5V, Adafruit #1501 or Maker Shed #MKAD69
+ Two 50-microamp full-scale analog meters, Adafruit #252

» DS1307 Real Time Clock breakout board kit, Adafruit #264 or Maker
Shed #MKAD19

* FTDI Friend, Adafruit #284 or Maker Shed #MKAD22 (optional for
debugging)

 Half breadboard, Adafruit #64, Maker Shed #MKKNZ2, or similar (half
is best)

+ Breadboard wires, Adafruit #153, Maker Shed #MKSEEED3, or similar
» 5V power supply, Adafruit #276 or similar
+ Female 2.1/5.5 mm DC power connector, Adafruit #368

» Perma-proto half-sized breadboard for more permanent installation,
Adafruit #1609 or Maker Shed #MKAD49

» Two 100,000-ohm (100K) resistors, 5% or better tolerance preferred
OR

Two 92,000-ohm (92K) resistors and two 10K-ohm potentiometers,
Adafruit #356

Build

Start by soldering the header pins (provided in the kit by Adafruit) onto the
Trinket. The DS1307 kit also requires assembly, as described in the DS1307

Intermediate Projects 111

http://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview

Real Time Clock Breakout Board Kit tutorial on building the clock module.
This requires some skill with soldering through-hole components.

Wire the project per Figure 5-34. You can power the Trinket with 5 to 16
volts via the BAT+ input and ground. This makes powering the clock very
flexible. For this project, | chose the Trinket 5V because the DS1307 board
has a 5-volt input that may be connected to the 5V output pin on the Trin-
ket. If another RTC module that works at 3.3 volts were available, the Trin-
ket 3V could be used with appropriate changes to the meter calibration.
This clock uses wall power (via a DC power adapter) because the power
draw is enough that batteries do not last a long time.

Optional FTDI
for debugging

le with [Fritzing.org
Figure 5-34. Analog Meter Clock wiring diagram

All the Trinket pins are used for the permanent circuit, except pin #3
(which is used temporarily to connect to an FTDI Friend). You'll use the
SendOnlySoftwareSerial library here to get data from the project to be sure
the clock is working during the build. This gives a console-like output using
only one pin and ground.

Meters

With a 5-volt Trinket and 50-microamp meters (such as the Adafruit mod-
els), for full-scale deflection we need a series resistor on each meter to
keep the current less than or equal to the maximum current the meter can
handle. Using Ohm’s law, R = V / [, we get 5 / .00005 = 100,000 ohms
(100K). So, you'll use two 100K resistors, preferably with a 5% or better
tolerance. These are commonly available from electronics suppliers. If you
want precision in calibrating the meter, you may want to substitute each

112 Getting Started with Adafruit Trinket

http://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview

resistor with a 92K resistor and a potentiometer, nominally 10K ohms, in
series. This lets you tune the resistance. When | built the project, the 100K
resistors gave accurate enough time without needing potentiometers.

will damage the meter. Use an appropriate series resistor in

Do not directly connect the meter to a source of voltage, as it
a the circuit to limit the meter current.

Libraries

You'll use the following libraries for this project (you can find the library
code at the links listed in “ATtiny-Optimized Libraries” on page 39).

* TinyWireM (the Wire library for the Trinket)
» TinyRTClib (for the DS1307 clock board)
» SendOnlySoftwareSerial (optional for debugging)

Code

Run the sketch in Example 5-10 twice, once to set the clock, and again to
have it operate. The code in setup checking for rtc.isrunning() should be
uncommented the first time. This will set the clock to the time your code is
compiled. You can then comment out that code, since the DS1307 will keep
the time with its onboard battery. You can download the code from the
repository for this book, (directory Chapter 5 Code, subdirectory Chap-
ter5_09AnalogClock). A separate clock setting sketch is in Chap-
ter5_11SetClock.

If you plan to have the code function differently than the sample or have
problems you want to debug, a serial monitor will help. The SendOnlySoft-
wareSerial library is helpful, but not necessary if everything appears to
work when assembled. The library adds about 1,300 bytes of program
code. You should comment out the serial code in your sketch when it is not
needed.

Example 5-10. Source code for the Analog Meter
Clock project

/* Trinket Analog Meter Clock Sketch */

#include <TinyWireM.h>

#include <TinyRTClib.h> (1]
//#include <SendOnlySoftwareSerial.h>

Intermediate Projects 113

http://bit.ly/GettingStartedWithTrinket
http://bit.ly/GettingStartedWithTrinket

#tdefine HOUR PIN 1 // Hour display via PWM on Trinket pin #1
#define MINUTE_PIN 4 // Minute display via PWM on Trinket pin #4

RTC_DS1307 rtc; (2]
//SendonlySoftwareSerial Serial(3); (3]

void setup () {
pinMode(HOUR_PIN, OUTPUT); (4]
pinMode (MINUTE_PIN, OUTPUT);
PUM4_init(); (5)

TinyWireM.begin(); // Begin I2C
rtc.begin(); // Begin DS1307 real-time clock
//Serial.begin(9600); // Begin Serial Monitor at 9600 baud
if (! rtc.isrunning()) {
//Serial.println("RTC is NOT running!"); (6)
//rtc.adjust(DateTime(DATE , TIME));

}

void loop () {
uint8_t hourvalue, minutevalue;
uint8 t hourvoltage, minutevoltage;

DateTime now = rtc.now(); @

hourvalue = now.hour();

if(hourvalue > 12) hourvalue -= 12; // This clock is 12 hour,
// convert 13-24 to 1-12

minutevalue = now.minute();

hourvoltage = map(hourvalue, 0, 12, 0, 255); o
minutevoltage = map(minutevalue, 0, 60, 0, 255);

/* Uncomment this and other serial code to check that the clock is working
Serial.print(now.year(), DEC); Serial.print('/"');
Serial.print(now.month(), DEC); Serial.print('/');
Serial.print(now.day(), DEC); Serial.print(' ');
Serial.print(now.hour(), DEC); Serial.print(':"');
Serial.print(now.minute(), DEC); Serial.print(':');
Serial.print(now.second(), DEC); Serial.print(" - ");
Serial.print(hourvoltage, DEC); Serial.print(' ');
Serial.print(minutevoltage, DEC); Serial.println();

*

/
analoghrite(HOUR_PIN, hourvoltage); @
analoghrite4(minutevoltage);

delay(5000); // Check time every 5 seconds. You can change this.

void PWM4_init() { ®

TCCR1 = BV (CS10); // no prescaler
GTCCR = BV (COM1B1) | BV (PWMiB); // clear OCiB on compare
OCR1B = 127; // initialize duty cycle to 50%
OCR1C = 255; // frequency

}

114 Getting Started with Adafruit Trinket

void analogWrite4(uint8_t duty value) { ®

OCR1B = duty value; // duty may be 0 to 255 (0 to 100%)

}

@ The TinyRTClib library is an integer version of the Adafruit RTClib
Arduino library.

(2] Set up the real-time clock data structure.

(3] For debugging, uncomment the serial code. Use an FTDI Friend with
its RX pin connected to Trinket pin #3. You will need a terminal pro-
gram (such as the freeware PuTTY for Windows) set to the USB port
of the FTDI Friend at 9,600 baud.

o Define the two meter pins as outputs (these must be PWM-capable
pins).

(5] Set Timer 1 to output PWM on Trinket pin #4.

(6] Uncomment these two lines, then run the code once. After that, com-
ment out these lines and load the new code on the Trinket. These two
lines set the clock with the date and time from the programming
computer when the sketch was compiled.

(7] Get the real-time clock info (hour and minute).

©® Convert hours and minutes into the pulse width duty cycle for meter
display. If you have calibration issues, you can change the last two
values (O higher, 255 lower) to have the needle move less if your
scale is not pasted on 100% straight.

(o] The pulse width to the meters is set here and is proportional to the
time.

10] Custom function to initialize PWM on Trinket pin #4.

® Function similar to analogWrite, which works on Trinket pin #4.

How It Works

The loop reads the hours and minutes from the DS1307 module. It con-
verts the hours to a 12-hour format, then the hours and minutes are each
scaled to a value of 0 to 255 and the pulse widths for pin #1 (hours) and pin
#4 (minutes) are adjusted accordingly.

If the serial debug code is enabled, a terminal window will display the code
in Figure 5-35.

Intermediate Projects 1156

"B COM15 - PuTTY

12:13:16

B3RP

Figure 5-35. Serial output from the Analog Meter Clock software

The text shows the date and time along with two numbers ranging from O
to 255, which represent a pulse width corresponding to the time. In
Figure 5-35, 255 shows this is noon, and 55 indicates 13 minutes after the
hour (55/255, which is not quite 1/4, equates to 13 minutes). If this type of
output is not displaying via the serial connection, check the wiring, code,
and serial terminal settings.

Preparing Your Meters

You will want to change the meter faces to have them display hours and
minutes instead of microamperes. Two basic designs are in Figure 5-36
and Figure 5-37. You can download them from http:/bitly/
set_up_and_mount_clock. There are other creative designs on the Internet
if you prefer something fancier, including those at http:/bit.ly/
custom_meter_backgrounds and http://bit.ly/chronulator_support.

6
3 9

~l V4
Hours <

Figure 5-36. The meter face for the hours display

30
B 45

O 50
Minutes

Figure 5-37. The meter face for the minutes display

When designing and printing the meter faces, you can take precise meas-
urements to get the correct needle sweeps, or you can obtain them via
some trial and error. If the clock is not giving the correct reading near full
scale, the faces reprinting or repositioning the faces instead of looking for a
clock or code issue. Use a graphics editing program (Photoshop, GIMP, or
many others) to shrink or expand the graphic to fit the same sweep as the
original scale on each meter.

116 Getting Started with Adafruit Trinket

http://bit.ly/set_up_and_mount_clock
http://bit.ly/set_up_and_mount_clock
http://bit.ly/custom_meter_backgrounds
http://bit.ly/custom_meter_backgrounds
http://bit.ly/chronulator_support

If you buy or salvage meters from old electrical equipment, it could lend a
different look to the project. The meters may not be 50-microamp full
scale, like the modern models, so some trial and error may be needed in
finding how much current produces a full-scale reading. Be sure to not
send any current through without large series resistors or perhaps a 500K
potentiometer. You should use a multimeter to check the resistance.

Meter movements and needles are very fragile. Be sure when
3 you work on the meter that the needle is not damaged.

To affix the completed faces on the meters, carefully remove the two silver
screws on either side of each meter, and lift up the cover. Cut the meter
face out of paper. Ensure a semicircle is cut out at the bottom so the nee-
dle will swing freely. Use a glue stick or other very light adhesive on the
meter face, then carefully slide the new face in without harming the meter
needle. Make slight adjustments as needed to align the scale. The meter
needle should be pointing at the left-hand mark on the scale. Put the cover
back on the meter and screw it on. Using a flat screwdriver, you can adjust
the zero on the meter slightly with the black screw in the lower middle of
the meter.

Meter Mounting

The meters each have four mounting posts, providing a sturdy mount on
nearly any surface. For the author's less-than-traditional mounting
method, the meters were placed side by side. The circuit board goes
behind the meters. You'll need a flat surface to do this. This is awkward,
because the meter movements stick out from the rear. To make a flat area
for the circuit, you can fashion a platform, as shown in Figure 5-38, using
3/8"-thick wood precut to 1 3/4" widths. Cut one piece at 2 7/8" to con-
nect the meters, and another at 2 1/4" to bring the level up to the back of
the meter movements. You can inset two screws (not too long!) from your
screw bin to connect the pieces. The long piece is mounted to the meter
with the included nuts. A 3D-printed mount would be another method to
make a custom platform.

Intermediate Projects 117

Figure 5-38. Mounting meters together and building a circuit board plat-
form

Mount the circuit board on the back of the meters, as shown in Figure 5-39.
Here, the breadboard is mounted. When you are satisfied with the circuit, it
would be best to transfer the circuit to a perma-proto or other strip circuit
board to provide sturdy, permanent connections.

Figure 5-39. Circuit board attached to meters

If the meters are mounted in a box, there will be much more flexibility in
terms of circuit board placement. You can cut holes for the meter move-
ments and mounting screws. The circuit board mounts anywhere inside
the enclosure. Be sure you include a route for power to get to the board.

118 Getting Started with Adafruit Trinket

You can mount the meters in an enclosure of any size or material. A nice
metal or wooden box, perhaps? The modern-inspired enclosure in
Figure 5-33 is a napkin holder from a clearance sale.

Conclusion

This chapter introduced many concepts through a number of builds: smart
LEDs, wearable electronics, movement with servos, sensing and displays,
and real-time clocks. With the concepts you now know, you can build a
wide variety of projects. In the next chapter, we’'ll go through some addi-
tional builds that demonstrate additional capabilities available in the
Trinket.

Intermediate Projects 119

6/Advanced Projects

The projects in this chapter are a bit more
complex. They entail more advanced con-
struction techniques, programming, and
iInterfaces than the projects you've worked on
so far. The Trinket, despite being so small, has
very advanced functionality built in, which
these projects will exploit.

Trinket Jewelry

This project (Figure 6-1), designed by Phillip Burgess, brings Trinket to
wearable electronic jewelry. It is based on an 8x8 LED matrix that you can
program with user-defined animations. It is a small project, equally suit-
able as a personal project or one for group workshops. And you will have
something eye-catching to wear and show off afterward!

Figure 6-1. Trinket pendant

121

The

default animation displays figures from the popular Space Invaders-

style games. You can customize the animation—popular themes are Pac-
Man-style characters or a beating heart.

Parts List

Trinket 5V version 1.1, Adafruit #1501 or Maker Shed #MKADE9
OR

Trinket 3V Version 1.1, Adafruit #1500 or Maker Shed #MKAD70
OR

Adafruit Gemma, Adafruit #1222

Mini 8x8 LED matrix with 12C backpack, any single color: (Adafruit
carries several colors: yellow-green #872, blue #959, yellow #871, red
#870, or white #1080)

3.7V 150m mAh lithium polymer battery, Adafruit #1317
LiPo battery charger, Adafruit #1304
JST surface-mount right-angle connector, Adafruit #1769

Optional parts:

A lanyard, if you wish to create a necklace. Nonconductive plastic lace
(the sort used for weaving bracelets), rubber necklace cord, or heavy
fishing line all work.

A pin backing, for a brooch (Adafruit #1170 or similar).

A start button (Adafruit #1489 or similar), to activate the animation.
Alternatively, you can just use the tiny reset button that is built into
the Trinket.

A bit of heat-shrink tubing (Adafruit #344 or similar) is best for cov-
ering some connections; it is cleaner than alternatives such as tape.

Choices

Often-asked questions on parts substitution include:

Can
vers

122

luse a “small” (1.2-inch) LED matrix instead of the “mini” (0.8-inch)
ion?

Yes, just be extra careful to follow the assembly directions in the Ada-
fruit LED backpack guide and install the matrix the right way on the
board. The “mini” matrix is recommended for this project because it is
more petite and less troublesome to assemble.

Getting Started with Adafruit Trinket

http://learn.adafruit.com/adafruit-led-backpack/1-2-8x8-matrix

Can | use other color matrices?
Yes, you can use any color 8x8 matrices: red, green, blue, white (using
the Adafruit models is suggested).

Can | use the Adafruit bicolor matrix backpack?
It will work, but you will have to adjust the bitmaps and code to handle
the extra rows. It appears like a 16x8 matrix to the driver chip, but
mechanically, the wiring is the same. See http://bit.ly/bicolor_matrix
for tips.

Tools

This is a soldering project, albeit a small one. You will need a soldering iron,
solder, wire (20 to 26 gauge, either stranded or solid), and tools for cutting
and stripping wire.

Wiring

Figure 6-2 shows the project built using a Trinket with an external JST con-
nection. The older Trinket 1.0 is shown, but the newer Trinket version 1.1
lets you solder a JST connector on the back to simplify construction. It is
best to solder the JST connector on the back of the board before soldering
the other connections. Battery power for other uses may be drawn from
the BAT+ pin. You can use this for powering other components. For up to
150 milliamps of stable 3.3-volt (Trinket 3V) or 5-volt (Trinket 5V) power,

you can use the regulated voltage pin labeled 3V or 5V. Because our dis-
play draws more than 150 milliamps, we'll use the BAT+ pin.

R

Split Inline Splices

(tricky) ’

1SEMAH 3.7V

Made with [Fritzing.org
Figure 6-2. Necklace wiring using Trinket and a LiPo battery

Figure 6-3 is the same project using the Adafruit Gemma (Trinket's sister
board). The Gemma has always had the JST connector but does not have
connections for pins #3 or #4.

Advanced Projects 123

http://bit.ly/bicolor_matrix

Optional
Replay Button

(or use reset
button on board)

Made with [) Fritzing.org To Battery

Figure 6-3. Necklace wiring using Gemma

Libraries

Ensure you have the TinyWireM library properly installed in the Arduino
IDE. See “ATtiny-Optimized Libraries” on page 39 for library locations and
“Installing Libraries” on page 41 for instructions on installing libraries. This
project will again use the power.h code packaged with the IDE, along with a
package called sleep.h.

This project also introduces you to including your own code files into the
main program. The animation code is defined in a separate file and
“broughtin” via #include "anim.h".

There is a difference between putting an included file or
library (via #include) in angle brackets (< >) versus using
double quotes (" "). Both work the same, but by conven-
tion standard libraries use angle brackets and local files use
quotes. If your code is in the Libraries subfolder of your
sketchbook folder (Arduino for PC/Mac users), you can use
angle brackets. The built-in includes are also included with
angle brackets (e.g., avi/power.h and ctypes.h). Local
includes should use double quotes to indicate that the file is
part of your program package (in the same directory as
your .ino file).

124 Getting Started with Adafruit Trinket

Code

The main program is in Example 6-1 and is available for download from the
repository for this book, (directory Chapter 6 Code, subdirectory Chap-
ter6_0lJewelry). It uses some new techniques. The animation code is in a
separate file listed in Example 6-2 as anim.h.

There is enough room in the chip for about 320 frames of animation; any-
thing smaller is fine, of course. Program memory (PROGMEM, explained in
“Program Memory for Data” on page 134) is used in the anim.h file for ani-
mations. This is the reason raw I12C command codes are used: to save pro-
gram space, leaving the maximum room for your animation data.

Example 6-1. Sketch for running the Trinket Jewelry
animation

// Trinket/Gemma + LED matrix backpack jewelry. Plays animated

// sequence on LED matrix. Press reset button to display again,
// or add optional momentary button between Trinket pin #1 and +V.
// THERE IS NO ANIMATION DATA IN THIS SOURCE FILE, so you should
// rarely need to change anything here. EDIT anim.h INSTEAD.

#define BRIGHTNESS 12 // 0=min, 15=max @
#define I2C_ADDR 0x70 2]

#include <TinyWireM.h>

#include <avr/power.h> @

#include <avr/sleep.h>

#include "anim.h" // Animation data is located here

static const uint8_t PROGMEM reorder[] = { // Column-reordering table @

0x00,0x40,0x20,0x60,0x10,0x50,0x30,0x70,0x08,0x48,0x28,0x68,0x18,0x58,0x38,0x78,
0x04,0x44,0x24,0x64,0x14,0x54,0%x34,0x74,0x0c,0x4c,0x2c,0x6¢c,0x1c,0x5¢c,0x3¢c,0x7C,
0x02,0x42,0x22,0x62,0x12,0x52,0x32,0x72,0x0a,0x4a,0x2a,0x6a,0x1a,0x5a,0x3a,0x7a,
0x06,0x46,0x26,0x66,0x16,0x56,0x36,0x76,0x0e,0x4e,0x2e,0x6e,0x1e,0x5e,0x3e,0x7e,
0x01,0x41,0x21,0x61,0x11,0x51,0x31,0x71,0x09,0x49,0x29,0x69,0x19,0x59,0x39,0x79,
0x05,0x45,0x25,0x65,0x15,0x55,0x35,0x75,0x0d,0x4d,0x2d,0x6d,0x1d,0x5d,0x3d,0x7d,
0x03,0x43,0x23,0x63,0x13,0x53,0x33,0x73,0x0b,0x4b,0x2b,0x6b,0x1b,0x5b,0x3b,0x7b,
0x07,0x47,0x27,0x67,0x17,0x57,0x37,0x77,0x0f,0x4f,0x2f,0x6f,0x1f,0x5f,0x3f,0x7f,
0x80,0xc0,0xa0,0xe0,0x90,0xd0,0xb0, 0xf0,0x88,0xc8,0xa8,0xe8,0x98,0xd8,0xb8,0xf8,
0x84,0xc4,0xa4,0xe4,0x94,0xd4,0xb4,0xf4,0x8c,0xcc,0xac,0xec,0x9c,0xdc,0xbc,0xfc,
0x82,0xc2,0xa2,0xe2,0x92,0xd2,0xb2,0xf2,0x8a,0xca,0xaa,0xea,0x9a,0xda,0xba,0xfa,
0x86,0xc6,0xab,0xe6,0x96,0xd6,0xb6,0xf6,0x8e,0xce,0xae,Oxee,0x9e,0xde, 0xbe, Oxfe,
0x81,0xc1,0xa1,0xel1,0x91,0xd1,0xb1,0xf1,0x89,0xc9,0xa9,0xe9,0x99,0xd9,0xb9,0xf9,
0x85,0xc5,0xa5,0xe5,0x95,0xd5,0xb5,0xf5,0x8d,0xcd, 0xad, 0xed, 0x9d, 0xdd, 0xbd, 0xfd,
0x83,0xc3,0xa3,0xe3,0x93,0xd3,0xb3,0xf3,0x8b,0xcb,0xab,0xeb,0x9b,0xdb,0xbb,0xfb,
0x87,0xc7,0xa7,0xe7,0x97,0xd7,0xb7,0xf7,0x8f,0xcf,0xaf,0xef,0x9f,0xdf,0xbf, Oxff

>

void ledCmd(uint8_t x) { // Issue command to LED backpack driver @
TinyWireM.beginTransmission(I2C_ADDR);
TinyWireM.write(x);

Advanced Projects 125

TinyWireM.endTransmission();

}

void clear(void) { // Clear display buffer
TinyWireM.beginTransmission(I2C_ADDR);
for(uint8_t i=0; i<17; i++) TinyWireM.write(0);
TinyWireM.endTransmission();

}

void setup() { (6)
power_timeri disable(); // Disable unused peripherals
power adc_disable(); // to save power
PCMSK |= BV(PCINT1); // Set change mask for pin 1
TinyWireM.begin(); // I2C init
clear(); // Blank display
ledCmd(0x21); // Turn on oscillator
ledCmd(0xEO | BRIGHTNESS); // Set brightness
ledCmd(0x81); // Display on, no blink

}

uint8_t rep = REPS;

void loop() { (7]
for(int i=0; i<sizeof(anim); i) { // For each frame...
TinyWireM.beginTransmission(I2C_ADDR);
TinyWireM.write(0); // Start address
for(uint8_t j=0; j<8; j++) { // 8 rows...

TinyWireM.write(pgm read byte(8reorder[pgm read byte(&anim[i++])]));

TinyWireM.write(0);
}
TinyWireM.endTransmission();
delay(pgm read byte(8anim[i++]) * 10);

if(!--rep) { // If last cycle... (5}
ledCmd(0x20); // LED matrix in standby mode
GIMSK = BV(PCIE); // Enable pin change interrupt
power all disable(); // All peripherals off
set_sleep mode(SLEEP_MODE_PWR DOWN);
sleep_enable();

sei(); // Keep interrupts disabled

sleep mode(); // Power down CPU (pin #1 will wake)
// Execution resumes here on wake @

GIMSK = 0; // Disable pin change interrupt

rep = REPS; // Reset animation counter

power timero enable(); // Reenable timer
power_usi_enable(); // Reenable USI
TinyWireM.begin(); // Reinitialize I2C
clear(); // Blank display
ledCmd(0x21); // Reenable matrix
}

}

ISR(PCINTO vect) {} // Button tap interrupt handler (just returns)

126 Getting Started with Adafruit Trinket

@ The brightness of the display is controllable by setting this value from
0 (off) to 15 (brightest). The less bright you set the display, the longer
the battery will last.

® This is the default address of the Adafruit backpack for the display,
unless you change the backpack's AO or Al jumpers.

® These libraries define functions to put the Trinket into a lower power
state.

0 Thistable of datais used to realign the rows and columns.

@ To save program space, you'll define the functions to send a com-
mand to the display backpack (1ledCmd) and clear it (clear) using low-
level calls to the Wire library rather than using a higher-level library.

(6] Some ATtiny85 functions are turned off to save power. The interrupt
vector is set to detect the button push, and the display is initialized
and cleared.

(7] This code reads the animation data and writes it to the display.
(5] After the last animation frame, the Trinket is put to sleep.

o When you press the button, it causes an interrupt, at which time
code execution resumes here. All the hardware we need is reenabled,
and the animation can start again.

The animation file will come shortly, but first—what is going on in this
code?

Normally, when using these matrices (especially with larger Arduino
compatibles) Adafruit recommends using their LED Backpack library. As
discussed in Chapter 4, libraries can introduce a great deal of code, which
limits the amount of space available for your own code. The code in
Example 6-1 minimizes the use of external libraries by doing a few things
with direct I12C calls—and it may be a bit intimidating at first glance. Here's
how it works:

In setup

The code disables the ATtiny85 Timer 1 and all analog-to-digital con-
version to save a little power and extend battery life. They are not used
by this program. Then it initializes the HT16K33 LED matrix driver chip
(using the TinyWireM Wire-compatible library for the 12C protocol),
clears the image memory, sets the display brightness, and enables the
display (brightness is set with a #define near the top of the code: lower
numbers are dimmer and improve battery life).

In loop
The program then loops one or more times, reading animation frames
from flash memory (to be explained next), sending the bitmap data to
the matrix driver, and displaying each image for a short period. The big

Advanced Projects 127

https://github.com/adafruit/Adafruit-LED-Backpack-Library

table lookup (reorder) is needed because the matrix columns are not
wired in order on the backpack board. This code reorders the bits in
memory to match the column order.

At the end of the sequence, both the LED matrix driver and the CPU
are put into a low-power state to help preserve battery life. We then
enable a pin-change interrupt on Trinket pin #1 that will wake the CPU
from sleep and restart the animation. This button is optional; you can
use the on-board reset button as well (though it will have a slight delay
because resetting the Trinket means you need to wait for the boot-
loader to start).

Animation

The animation data resides in a separate file, so you can modify it without
having to rummage through the rest of the code.

At the right side of the Arduino IDE window, click the triangle, select New
Tab, and type anim.h as the filename. Then load the code from
Example 6-2 (also available from the repository for this book, directory
Chapter 6 Code, subdirectory Chapter6_0lJewelry, in the file anim.h).

Example 6-2. Animation data for the jewelry project

/* Animation data for Trinket/Gemma + LED matrix backpack jewelry.
Edit this file to change the animation; it is unlikely you will need
to edit the source code. */

#define REPS 3 // Number of times to repeat the animation loop (1-255)

const uint8_t PROGMEM anim[] = { (1]

// Animation bitmaps. Each frame of animation MUST contain
// 8 lines of graphics data (there is no error checking for
// length). Each line should be prefixed with the letter 'B’,
// followed by exactly 8 binary digits (0 or 1), no more,

// no less (again, no error checking). '0' represents an

// 'off' pixel, '1' an 'on' pixel. End line with a comma.

B00011000, // This is the first frame for alien #1
B00111100, // If you squint you can kind of see the
B01111110, // image in the 0s and 1s.

B11011011,

B11111111,

B00100100,

Bo1o11010,

B10100101,

// The 9th line (required) is the time to display this frame,
// in 1/100ths of a second (e.g., 100 = 1 sec, 25 = 1/4 sec,
// etc.). Range is 0 (no delay) to 255 (2.55 seconds). If

// longer delays are needed, make duplicate frames.

128 Getting Started with Adafruit Trinket

25, // 0.25 seconds

B00011000, // This is the second frame for alien #1
Boo111100,

B01111110,

B11011011,

B11111111,

B00100100,

B01011010,

Bo1o00010,

25, // 0.25-second delay

// Frames 3 & 4 for alien #1 are duplicates of frames 1 § 2.

// Rather than list them 'the tall way' again, the lines are merged here...

B00011000, B00111100, B01111110, B11011011, B11111111, B00100100,
B01011010, B10100101, 25,

Booo11000, B00O111100, BO1111110, B11011011, B11111111, B00100100,
B01011010, B01000010, 25,

B00000000, // First frame for alien #2
B00111100,

Bo1111110,

B11011011,

B11011011,

Bo1111110,

B00100100,

B11000011,

25, // 0.25 second delay

B00111100, // Second frame for alien #2
B01111110,

B11011011,

B11011011,

Bo1111110,

B00100100,

B00100100,

Boo100100,

25,

// Frames 3 & 4 for alien #2 are duplicates of frames 1 & 2

B00000000, B00111100, B01111110, B11011011, B11011011, B01111110,
B00100100, B11000011, 25,

Boo111100, BO1111110, B11011011, B11011011, B01111110, B00100100,
B00100100, B00100100, 25,

B00100100, // First frame for alien #3
B00100100,
Bo1111110,
B11011011,
B11111111,
B11111111,

Advanced Projects

129

B10100101,
B00100100,
25,

B00100100, // Second frame for alien #3
B10100101,

B11111111,

B11011011,

B11111111,

B01111110,

B00100100,

B01000010,

25,

// Frames are duplicated as with prior aliens

B00100100, B00100100, B01111110, B11011011, B11111111, B11111111,
B10100101, B00100100, 25,

B00100100, B10100101, B11111111, B11011011, B11111111, B01111110,
B00100100, B01000010, 25,

B00111100, // First frame for alien #4
Bo1111110,

B00110011,

Bo1111110,

B00111100,

B00000000,

B00001000,

B00000000,

12, // ~1/8-second delay

B00111100, // Second frame for alien #4
B01111110,

B10011001,

Bo1111110,

B00111100,

B00000000,

B00001000,

B00001000,

12,

B00111100, // Third frame for alien #4 (NOT a repeat of frame 1)
Bo1111110,

B11001100,

Bo1111110,

Boo111100,

B00000000,

B00000000,

Boooo1000,

12,

B00111100, // Fourth frame for alien #4 (NOT a repeat of frame 2)

Bo1111110,
Bo11o00110,

130 Getting Started with Adafruit Trinket

B01111110,
B00111100,
B00000000,
B00000000,
B00000000,
12,

// Frames 5-8 are duplicates of 1-4, lines merged for brevity

Boo111100, B0o1111110, B00110011, B01111110, B00111100, B0O000000O,
B00001000, B00000000, 12,

B00111100, B01111110, B10011001, B01111110, B00111100, B0O000000O,
B00001000, B00001000, 12,

B00111100, B01111110, B11001100, B01111110, B00111100, B0O000000O,
B00000000, B00001000, 12,

Boo111100, B01111110, B01100110, B01111110, B00111100, B0O000000O,
B00000000, B00000000, 12,

s
(1] The data is coded in the header file, both to make it easy to visualize
and easily read by Trinket.

Compile

From the Tools—Board menu, select Adafruit Trinket 8 MHz or Adafruit
Gemma, as appropriate. Connect the USB cable between the computer
and the board, press the reset button, then click the upload button (right
arrow icon) in the Arduino IDE. In a moment, you should get a light show
from the LEDs.

/ If the display does not light up, check your wiring against the
wiring diagram. If the code refuses to compile, most likely the
TinyWireM library is not correctly installed, or the anim.h file
is misnamed. The error messages that appear when you try
to compile the code will give you a hint as to which problem
might be happening.

You will see an animation sequence of four Space Invaders-style aliens that
repeats three times and then shuts off. To see it again, tap the reset button.
If the USB cable is still connected, there is a bit more delay due to the boot-
loader before it starts again. This is normal: the delay is much shorter
when running off the battery or using the optional replay button.

Advanced Projects 131

Changing the Animation

To change the animation, you need only edit or replace the contents of
anim.h. It is rare that you will need to edit the main source code. If you're
feeling ambitious, you could write a program to convert an animated GIF
into a replacement anim.h file, but for now it is necessary to edit this file
manually.

There are nine lines for each frame of animation; eight of these are bitmap
data, and the ninth line is the delay time. Each bitmap line consists of the
letter B followed by 8 binary digits (O or 1), where O (zero, not uppercase
letter o) represents an “off” pixel and 1 (one) an “on” pixel, and ends with a
comma. The delay is given in 1/100ths of a second; 100 = 1 second, 25 =
1/4 second, and so forth. The delay range is from O to 255; if you need
longer delays, make duplicate frames.

You can almost see the bitmap image in Figure 6-4.

BOOO11000,
BOO111100,
B01111110,
B11011011,
B11111111,
B00100100,
B01011010,
B10100101,

Figure 6-4. Comparing the code and the LED matrix

You do not have to represent every row on its own line like this, but it makes
the image much easier to visualize. You can see a few places in the code
where all nine lines are placed together to save space in the vertical direc-
tion. These frames are copies of others; you already know what they look
like so you don't need to see them laid out nicely.

After editing, press reset on the board and upload as you did before.

If the program refuses to compile after editing anim.h, the cause is most
likely one of the following:

+ A missing comma at the end of a line

» A missing uppercase B at the start of a line

132 Getting Started with Adafruit Trinket

» Too many or too few digits on a line, or characters other than O (zero)
and 1 (one)

» Spaces between characters

Finishing the Jewelry

Connect the LiPo battery to make sure that everything runs, then stack the
components and fold any wires around so that nothing is protruding. If
you're using the on-board reset button, make sure it is on the back side
where you can reach it, not blocked by the LED backpack or battery. Other
than your wires, there should be no conductive parts making contact
between the microcontroller board and LED backpack.

Figure 6-5 shows building a pendant by mounting the Trinket or Gemma on
the back of the display. The layers can be held together with small pieces
of foam tape, dabs of hot-melt adhesive, or epoxy. If you added a replay
button, you can encase the whole thing in a plastic bubble (such as the
ones toy vending machines dispense) with just the button protruding.

Figure 6-5. A side view of the pendant built with a Gemma

The mounting holes on the LED backpack can be used for attaching a lan-
yard. Plastic lace from a craft store is one option. Do not use a metal chain
for this, as it is conductive and could cause an electrical short as the

Advanced Projects 133

pendant shifts around. Another option is a pin back. Adafruit has a mag-
netic version, but you can find the regular pointy-pin variety at most sew-
ing or craft shops. Be careful to make sure the pin doesn’t bridge any elec-
trical contacts.

The little battery should last all day, depending on how often you activate
it. To recharge it, unplug the LiPo cell from the Gemma or Trinket and con-
nect it to the Adafruit micro LiPo USB charger (or equivalent). The battery
does not charge when the microcontroller is connected to USB.

Program Memory for Data

The Trinket's RAM is so very precious: only 512 bytes. Where can you stash
additional data? The EEPROM is available, but it's not easy to use and is
also limited to 512 bytes. It is more practical to use program (flash) mem-
ory to store additional data.

You can use program memory in a couple of ways. When declaring vari-
ables, you can declare them as constant data, as is done in the jewelry pro-
gram:

#include <avr/progmem.h>

const variabletype PROGMEM variable = { data; ... }

The PROGMEM identifier states that the constant data you define should be
placed into flash memory and not into RAM. The types of data you can use
for PROGMEM are defined in the standard header file avr/progmem.h, which is
included with the Arduino IDE.

The problem with this method is that the data cannot be read back with
normal data functions. Some cryptic bugs are generated by using ordinary
data types for program memory access! You must read the data back
using calls to function macros prefixed by pgm read, as in the following
examples:

// read back a two-byte integer

myInt = pgm read word(wordprogmemvariable)

// read back a character (single byte)

myChar = pgm read_byte(_charstringprogmemvariable);
You used pgm_read functions in the loop function in Example 6-1.
The best programming practice is to read small chunks—such as one
frame of animation data—then use it, then repeat. It would make little

sense to define a large block of data as PROGMEM and then read all of it into
RAM.

Program memory can also be useful for storing strings. We do this by
enclosing them in the F macro. Consider this example:

Serial.println("Long string we want to send to a SoftwareSerial pin");

134 Getting Started with Adafruit Trinket

Storing this string (the characters, and a null character to terminate the
string in memory) uses up to 62 bytes of RAM. We can shift this to pro-
gram memory as follows:

Serial.println(F("Long string we want to send to a SoftwareSerial pin"));

The F macro tells the compiler to place this string into flash memory. Its
use remains unchanged, but the program will have more RAM available.

The F macro does add some bulk to the compiled code—about a hun-
dred bytes are required to implement the functionality. If you want to use
the macro to save space in a very constrained program memory environ-
ment, the space saved may be less than the space used to implement the
macro.

More on use of program memory can be found on the Arduino website.

Trinket Occupancy Display

This is a fun project inspired by an Adafruit customer email inquiry.

Every facility has a conference room or meeting space. And when the door
is closed, it is always a guessing game whether the room is occupied or
not. This inevitably leads to someone opening the door and disturbing
what is happening inside—interrupting a meeting or perhaps spoiling an
important experiment. An occupancy indicator, such as the one in
Figure 6-6, could solve the problem.

Figure 6-6. The Trinket Occupancy Display

Advanced Projects 135

http://arduino.cc/en/Reference/PROGMEM

A passive infrared sensor (PIR) is the gold standard for tracking movement
of people in a general area. It does not measure distance as an ultrasonic
sensor does, but it has a wide field of view and good sensitivity to warm
bodies. You can find a tutorial on this type of sensor at http:/bit.ly/
PIR_Motion_Sensor.

In the project we'll build next, a Trinket receives the signal from a PIR inside
a room. When the room is occupied, the sensor activates and the Trinket
will display a red X on an Adafruit 8x8 bicolor LED matrix. If there is no
movement, it displays a green square.

Commercial sensor/indicator combinations such as this can cost over
$400 dollars each. If you have many rooms, the cost can add up.

The occupancy indicator may be built on a breadboard if you
do not intend on making a permanent project.

Parts List

Trinket 5V, Adafruit #1501 or Maker Shed #MKAD69
8x8 bicolor LED matrix with I12C backpack, Adafruit #902
PIR (motion) sensor, Adafruit #189

Perma-proto half-size breadboard (single), Adafruit #1609 or Maker
Shed #MKAD49

5V power supply, Adafruit #276 or similar

Panel mount 2.1/5.5 mm DC power connector, Adafruit #610

Small plastic box, weatherproof, Adafruit #903

Cable gland, PG-9, Adafruit #761

Female header, Adafruit #598 or similar

Male header, Adafruit #392 or similar

Rainbow female—female cable, Adafruit #793 or similar
1,500-ohm (1.5K) resistor

Four-conductor wire, long enough to run from your PIR to your box
8-32 x 1/2" screw

136 Getting Started with Adafruit Trinket

http://bit.ly/PIR_Motion_Sensor
http://bit.ly/PIR_Motion_Sensor

Tools

» Soldering iron and solder

« Drill and bits (a rotary tool may substitute for some work)
+ File(s)

+ Diagonal pliers for cutting wires and header

» Wire strippers

« Chisel and hammer

Wiring
The half-size perma-proto circuit board is nearly the perfect size to fit the
planned enclosure.

Cut some female headers into two lengths of five and two lengths of four
pins. The fives will make a socket for the Trinket, allowing easy access to
remove it for programming. The four-pin blocks are for the bicolor LED dis-
play signals (bottom) and to balance it on the other side, as shown in
Figure 6-7 and Figure 6-8.

3355% PR

-
y L 23
-4 ;
- o 0
. 'y 3 -1
2391 T :

. » EH 28035 0ssss
se8es L Ssassssanas sRsen

Figure 6-7. Attaching headers to mount the Trinket and the LED matrix

Solder the wires and the header in place. A bit of Blu Tack or other tempo-
rary adhesive is helpful to keep parts in place when you turn the board over
to solder. Insert the 1.5K resistor and solder. Trim off the excess leads. The
male header pins allow for easy removal of wires for the PIR and power (if
you used female headers for the power jack).

Advanced Projects 137

Use Panel Mount
Jack for box

— L] .
Y EEETEEEE | B LR I T Trinket 5V

PIR Sensor

e o000 @
Bicolor LED

= Matrix
Made with [Fritzing.org

Figure 6-8. Wiring for the Trinket Occupancy Display and sensor

Now mounting the large parts is as easy as snapping them on, as shown in
Figure 6-9.

EEErTE Made with [Fritzing.org

Figure 6-9. Parts mounted to the board—note the actual display is larger
than the Fritzing library shows

The display top will be supported by the top piece of a four-pin header
(which does nothing electrically and has no pins to plug into; it is only a
brace). Figure 6-7 shows a small piece of bent header obtained from the
scrap pile to prop it up a tiny bit more—you can use nearly anything, such
as Play-Doh, hot glue drops, etc.

138 Getting Started with Adafruit Trinket

Make the point-to-point wiring connections as follows:

+ Trinket pin #0 to the display 12C data line
« Trinket pin #2 to the display I2C clock line

» BAT+ on Trinket to the + line on the proto-board, which is connected
to 5volts

* GND on Trinket to the — line on the proto-board, which is connected
to power ground

 Trinket pin #1 to a 1,500-ohm resistor, which is connected to +5 volts
(resistor available at RadioShack, Maker Shed, and other electronics
outlets)

« Trinket pin #1 to the PIR data line (center)
The red power line on the PIR and display goes to the 5-volt + line on the

proto-board. The black ground line on the PIR and display goes to the
ground line on the proto-board.

Be sure you interconnect the top and bottom power lines with wires
(toward the left).

Mount two pins to the power lines to plug in the power jack (the upper left
of the circuit board). You'll also mount pins on power and Trinket pin #1 to
easily connect the PIR wire. For a final install, you will probably connect a
long four-conductor wire from the box out to the PIR mounting location.

Double-check all wiring with the diagrams and pictures.

Libraries
You'll use three Arduino libraries to facilitate programming:
+ The TinyWireM library provides 12C communications between the
Trinket and the display
» The Adafruit-LED Backpack library has routines to talk to the display

» The Adafruit GFX library is required to accompany the backpack
library

See “ATtiny-Optimized Libraries” on page 39 for library locations and

“Installing Libraries” on page 41 for instructions on installing libraries. The
Adafruit libraries take up a fair amount of space but simplify programming.

Code

The libraries make the code compact, as you can see in Example 6-3 (also
available from the repository for this book, directory Chapter 6 Code,

Advanced Projects 139

subdirectory Chapter6_020ccupancy). Two bitmaps are defined in pro-
gram memory, similar to the coding method in the Trinket Jewelry project.

Example 6-3. Sketch for the Trinket Occupancy
Display project

/* Adafruit Trinket-based Room Occupancy Sensor and Display */

#include <TinyWireM.h>
#include "Adafruit LEDBackpack.h"
#include "Adafruit_GFX.h" 1)

const int PIRpin = 1; (2]
uint8_t pirState = LOW; // Stores state of the PIR sensor

Adafruit BicolorMatrix matrix = Adafruit BicolorMatrix();

void setup() {
pinMode(PIRpin, INPUT); // Initial state is low
matrix.begin(0x70); // Pass in the address

static const uint8 t PROGMEM // X and square bitmaps @
x_bmp[] =
{ B10000001,

Bo1oooo010,

B00100100,

B00011000,

B00011000,

B00100100,

B01000010,

B10000001 },

box_bmp[] =

{ B11111111,
B10000001,
B10000001,
B10000001,
B10000001,
B10000001,
B10000001,
B11111111 };

void loop() {
int sense = digitalRead(PIRpin); // Read PIR sensor
if(sense == HIGH) { // If high and it was low, sensor tripped
if(pirState == LOW){ // and we display a red X

matrix.clear();
matrix.drawBitmap(0, 0, x_bmp, 8, 8, LED RED);
matrix.writeDisplay();
pirState = HICH;

}
} else {

140 Getting Started with Adafruit Trinket

if(pirState == HIGH) { // If low and state was high, sensor set
matrix.clear(); // and we display a green box
matrix.drawBitmap(0, 0, box_bmp, 8, 8, LED_GREEN);
matrix.writeDisplay();
pirState = LOW;

}

}
}

© The Adafruit graphics library adds a great deal of unneeded code, but
simplifies this project significantly. Using “raw” Wire library calls as in
“Trinket Jewelry" on page 121 could result in less code.

(2] The PIR signal pin is connected to Trinket pin #1.
® These bitmaps may be changed to any design you desire.

The PIR sensor is read from Trinket pin #1. Because this pin has the
onboard red LED, a low-value pull-up resistor (1,500 ohms or so) is
required. The pin is set to an input and the pin state is read in a loop. When
a state change is detected (i.e., the PIR senses a change in the state from
the last time through the loop), the bitmap changes. A red X is displayed
for occupied, and a green square for unoccupied.

/ The Arduino delay software function cannot be used with the
libraries, as it adds a bit too much code (the program uses
nearly all the Trinket program space). Adjust time delays
using the PIR potentiometers.

Unfortunately, this much code takes most of the program flash memory. If
you add much more code to this program, it will most likely give an error
indicating you've used too much program memory. The code space is very
tight due to the nice Adafruit prewritten libraries.

Enclosure and Board

The small weatherproof enclosure (Adafruit #903) is a good-size box for
this project. The half-size perma-proto board fits inside the box and clears
the rounded divots with a bit of modification.

You should modify the board and box as shown in Figure 6-10.

Round the edges on one side of the perma-proto board with a file or
Dremel-style rotary tool. Enlarge the hole in the center line on the side with
the rounded edges to fit an 8-32 1/2" screw that mates with the box.

You'll use the 2.1 mm panel mount barrel jack for power. Solder the power
wires on prior to installation (the large lug is positive). Colored wires with
female pin connectors on them would be best, if you have some; otherwise,

Advanced Projects 141

long stranded wire will work well. Connect the red wire to the center lug,
and the black wire to the lug 90 degrees clockwise from that. Connect the
power to the jack and use your multimeter on a voltage scale to test for
correct voltage and polarity. It is best to test the voltages before connect-
ing the circuit board to avoid burning out a part.

Figure 6-10. The modified circuit board and mounting box

Drill a 1/2-inch hole in the box just past the cover hole. Chisel out the plas-
tic dimple in that area to get the power jack to fit in that location. Thread
the jack in, securing it with the included plastic screw ring. The cable gland
keeps things weathertight where you run the PIR sensor wires through the
enclosure. Drill a 5/8-inch hole (for the large gland; smaller if you use the
small gland) between the power jack and the other case cover hole. There
is a small lip on the case: grind it down a bit with the rotary tool to have the
gland lock ring fit snugly. You can run penetrations through the back as an
alternative if you want the look to be “cable free,” as for a nice conference
area.

It is best to make mounting holes in the back of the case if needed at this
point. They will let you secure the case on a wall. This would be harder to
do later in the build, given the number of items being mounted in the box.

The circuit board should be mounted so the screw is in the standoff fur-
thest from the penetrations. The other side rests on the other mount but is
not quite long enough to mount via the hole. This is fine, as that side of the
enclosure is crowded with box penetrations.

Box Connections

Mount the circuit board inside the enclosure with the screw. If it does not
fit, you must take some material off the right ends and enlarge the hole for
the screw.

Plug in the power from the power panel mount jack to the plus and minus
on the board. Triple-check the power connections. Run a cable from the
PIR to the +, —, and pin #1 on the Trinket, per Figure 6-8. You can now plug
in the display.

142 Getting Started with Adafruit Trinket

Adjustment

The PIR has two adjustment potentiometers on the back, as shown in
Figure 6-11.

Figure 6-11. Available adjustments on the Adafruit passive infrared sensor
board

The one potentiometer adjusts the sensitivity of the sensor. Start with a
reading toward the “min” side, and adjust clockwise as necessary.

The other potentiometer adjusts the time the sensor stays latched, or in
the on state. When testing, leave this at the left, which is a short time.
Adjust clockwise for longer intervals.

Test the unit by making all the connections, with the PIR pointed away from
movement or covered by a cardboard box. The green square should be dis-
played, as in Figure 6-12. Figure 6-13 shows what it looks like when motion
is detected.

Advanced Projects 143

Figure 6-12. Testing the project: no motion detected

Figure 6-13. Testing the project: motion detected

144 Getting Started with Adafruit Trinket

Move in front of the sensor and the red X should be displayed, as in
Figure 6-13.

If the display does not change, check your wiring to the sensor and the PIR
sensor adjustment potentiometers. Once it is working, you can again
adjust the potentiometers to increase the sensitivity, the delay, or both.

Room Placement

Mount the display box above or next to the door of the room you want to
monitor. Inside the room, mount the PIR sensor so it has a wide field of
view , as in Figure 6-14. For a conference room, aim for the table area, tak-
ing care not to point above people's heads. Five-volt power should be
obtained from a wall adapter and connected to the display. Run a wire from
the display box to the infrared sensor.

\\\‘ \ |
g \ Display Box
e \ [7 Door

Infrared Sensor

Infrared Sensor Coverage —— Wiring

Figure 6-14. Mounting the sensor and the display box

If you want just the display to show through the clear cover, you can make
a mask from white paper or vellum. You can have the LED display show
through the mask or cut out a square just for the display.

Going Further

The basic function of “sense and warn” applies to a broad range of useful
projects. You can replace the sensor used here with other models. You can
also replace the display with a character display or NeoPixels.

Advanced Projects 145

A full-featured alarm system is well within the Trinket's capabilities. The
next project is a more standard alarm that can be used to monitor rooms
and alert you wirelessly.

Trinket Alarm System

A sensor system that acts as an alarm is something nearly every experi-
menter tries to build at some point. The leap from a simple sense and warn
circuit to a practical alarm system can be more complex than it appears at
first glance, though. “Bad guys” have been defeating alarms since the first
use of dogs and geese as perimeter alarms. Bad guys know you have an
alarm, and may possibly know how to get around it—that is, unless you
have put thought into the alarm, staying ahead in the “what if” game.

Building on previous projects, you can fashion an alarm system like the
one shown in Figure 6-15, which is suitable for one or more rooms. The sce-
nario is a common one: an unprotected room, with multiple ways to break
in. Your Trinket alarm will transmit some type of signal alerting you to any
activity.

Figure 6-15. A Trinket-based alarm system

146 Getting Started with Adafruit Trinket

Parts List

Trinket 3V, Adafruit #1500 or Maker Shed #MKAD70
Bluefruit EZ-Link serial breakout, Adafruit #1588

+ PIR (motion) sensor, Adafruit #189

+ Magnetic contacts SPST, normally closed, Adafruit #375

* Perma-proto quarter-sized breadboard (single), Adafruit #1608 or
Maker Shed #MKAD48

» 5V power supply, Adafruit #276 or similar

» Panel-mount 2.1/5.5 mm DC power connector, Adafruit #610
» USB LiPo charger, Adafruit #259

+ 3.7V 1,200 mAh lithium polymer battery, Adafruit #258
Terminal block, four-pin Eurostyle, Adafruit #677

Small plastic box, weatherproof, Adafruit #903

Cable gland, PG-9, Adafruit #761

+ Female header, Adafruit #598 or similar

Resistors: 1,000 ohm, 1,500 ohm, 2,200 ohm, 3,300 ohm

» Hookup wire, Adafruit #289, #288, #290, or similar

» Two-conductor wire, to run from the magnetic sensors to the box
+ 8-32x1/2" screw

Optional: Rainbow female—female cable, Adafruit #793 or similar

Optional: Plastic standoff, double-sided foam tape

Tools

» Soldering iron and solder

« Drill and bits (a rotary tool may substitute for some work)
+ Files

+ Diagonal pliers for cutting wires and header

» Wire strippers

» Chisel and hammer

Advanced Projects 147

Theory

Most alarm systems follow a basic design: a switch closure (or opening)
triggers action by a central monitor, and the alarm generates some form of
annunciation. A block diagram is in Figure 6-16.

Sensor
Branch
Central
Monitoring
Sensor Unit

Branch

Sensor
Branch

Figure 6-16. The building blocks for an alarm system

The sensor blocks may actually be multiple sensors in one monitoring
branch; all of the sensors in the branch are connected into the alarm as
one bundle. The system might be designed to give only one indication that
the sensor chain has been triggered, or, with a smarter design, multiple
sensors can provide individual indications.

Switches can be normally closed or normally open, as shown in
Figure 6-17. When they are triggered, they change state (closed goes open,
open goes closed). The monitoring unit notices the change and, if it meets
criteria that the monitor believes is an alarm, the monitor annunciates.

Normally Normally
Open Closed

Figure 6-17. Switch types

Annunciations can take many forms. The stereotypical alarm system has a
large horn to make an ear-splitting sound, but it can be much subtler. The
central monitor can produce a “silent alarm," making the intrusion known
in some way, either locally or far away. An example would be a text or SMS
message on your phone stating when an alarm has been tripped. The sim-
plest alarm may only trigger a local alarm not designed to scare the
intruder—this can be a nearby notification, or it could be a record of alarm
events for later review.

148 Getting Started with Adafruit Trinket

Multiple Sensors, One Pin

You can use nearly unlimited sensor switches if you place multiple switches
in each branch as shown in Figure 6-18. In a simple design, the branch can
sense when one switch out of the group changes state, but all you know is
that one of the multiple switches in the branch has tripped. Construct a
branch by using normally open sensors in parallel or normally closed sen-
sors in series. You can use both types of sensors, putting the closed
switches in line and the open switches in parallel. The pull-up resistor pulls
the circuit high if the loop is opened; otherwise, the loop is grounded.

Vce Vce

Normally Open
Sensor Branch

| S S S
{ (i/ { ‘ To Iﬂggtltor
1 o o—¢

— — Ground

Normally Closed
Sensor Branch

Figure 6-18. Normally closed and normally open sensor branches

Alternatively, there are circuit methods that allow you to identify which
switch in a branch was tripped if you use an analog pin. These methods
use resistors to change the voltage values that the analog pin reads. Some
Arduino shields use this method to read four to six switches, to determine
which button is pushed.

However, many analog switch reading circuits have a problem: they cannot
determine if two buttons are pressed at the same time. For a simple alarm
system, this might not matter—you will receive notification that a sensor
indicates an alarm, but you won't know which specific sensor activated,
only that one sensor on a particular branch has triggered. With a bit more
circuit design, though, you can determine if multiple sensors have tripped
on a single branch, and which ones they were. The method used most
often in textbooks is the R-2R resistor ladder shown in Figure 6-19.

Figure 6-20 shows a simplified design by the author. It is a parallel resistor
system that uses fewer components and has good accuracy for Arduino-
type analog inputs. The complexity grows with the number of sensors, so it
was designed for just three sensors on a branch.

Advanced Projects 149

Figure 6-19. R-2R ladder

Vee
R4
1.5kQ
Analog Input
R1 R2 R3
Ground 1kQ 2.2k 3.3kQ
S1 s2 S3

Figure 6-20. Sensing three switches using one analog pin

Normally, the analog input is pulled high by resistor R4. If any of the
switches S1, S2, or S3 is closed, the resistance changes in a predetermined
way. Circuit-wise, each of the resistors R1, R2, and R3 would add to the
total resistance, using the familiar circuit formula 1/R = 1/R1 + 1/R2 +
1/R3. All you have to do is measure the analog values read by the Trinket
and add them to the code. This method works equally well for normally
open or normally closed switches. It requires four resistors for three sen-
sors, whereas the pure R-2R ladder method requires five to six resistors.

150 Getting Started with Adafruit Trinket

Project Design

This design will take sensors, add central monitoring code, and output
alarm events to an annunciation system (another computer connected via
Bluetooth). Several configurations will be shown to allow you to configure
different alarm systems.

The Trinket has the capability to create an excellent alarm at a cost much
lower than that of other alarm platforms. There are five general-purpose
pins, three of which may be digital or analog. At a minimum, you will need
one sensor (or sensor branch) in, and one annunciation path out. That
uses two of the five pins. Or you can have an annunciator that uses up to
four pins, or several sensor branches and a more modest annunciator.

This project design is for a generic monitored area: a single area alarmed
and annunciated either locally or to a remote site. You can adapt the
design for multiple rooms (doors, windows, movement), but there are limi-
tations to the number of sensors if you want to know the exact sensor that
is triggered. If you only need to know whether “something” happened in a
sensor chain, you can use a nearly unlimited number of sensors.

A typical scenario is monitoring a room in a building or a garage, as shown
in Figure 6-21. In this garage example, we want to monitor the main door, a
side door, and the space within the room (in a regular room, we might sub-
stitute a window for the garage door). To cover the area well, we'll use a
magnetic contact on each of the areas that can open and close, plus a
volumetric (area) sensor in case one of the other sensors fails or someone
breaks in without tripping a magnetic contact. You may go to greater
extremes in covering an area, but it costs resources (money and processor
pins) without providing much more security.

This design uses one analog sensor branch, shown in the design diagram.
The infrared sensor (PIR) and the magnetic contacts are wired together
into an analog ladder, as in “Multiple Sensors, One Pin" on page 149.
Annunciation is transmitted via Bluetooth to a monitor room inside the
house. In a good design the monitor is located away from the area being
surveilled, so the intruder cannot disable the alarm easily.

This design also leaves pins available for additional sensors or other
annunciation.

Advanced Projects 151

1 Magnetic Contact 2

\ Garage Door 1 f
\ ' I;'

Magnetic Contact 3

[7 Door

_ / | | Annunciator
/ Monitor

Room

I\

Alarm Box and
Infrared Sensor

- Infrared Sensor Coverage ———————— Wiring Bluetooth Signal

Figure 6-21. Sensor layout for an alarmed space and monitor location

Annunciation Selections

There are many ways to alert you if the alarm has tripped. Some favorite
ways:

A speaker
The simplest method is to use a loud noise. A piezo speaker does this
well; you can output several tones or just an ear-piercing whine. You
can use an audio amplifier to make a louder sound. You will need to
match the wattage of your speaker to that of the amplifier. Between
the Trinket and the amplifier, ensure you do not input too much power
or voltage.

A display
If you leave pins #0 and #2 (the I12C pins) free, a character display with
a backpack, as demonstrated in previous projects, could display the
status. You may also use an LED as a simple indicator. The Trinket pin
#1 built-in LED is perfect for this, although you could use NeoPixels or
other LEDs.

Communication to other devices
A serial connection may also be established using an Adafruit FTDI
Friend or Bluefruit EZ-link. Another computer or handheld device may
receive the serial data and act on it.

A combination
If the infrared sensor and all the magnetic switches are on a combined
branch on an analog input, then multiple annunciation methods could
be available.

162 Getting Started with Adafruit Trinket

The final project build plan annunciates via both the pin #1 LED and a
Bluefruit.

Build

This project uses the exact same enclosure and similar construction meth-
ods (Figure 6-22) to those used in “Trinket Occupancy Display” on page
135.

Sesssssssssssss
Ssesssssass

5 67 8 8 181142138915
.-

Figure 6-22. The alarm mounting box and circuit board modifications

Adafruit's small weatherproof enclosure is economical for this project,
although the layout will be a bit tight (things are layered in the enclosure). If
you need additional room, a larger enclosure can be substituted. The
quarter-sized perma-proto board is a great size to lay out circuit
components.

The 2.1 mm panel mount barrel jack is used for power: solder power wires
on prior to installation (the large lug is positive). Drill a 1/2-inch hole just
past the cover hole. You'll need to chisel out a pesky plastic dimple to fit
the jack in that location. Thread the jack in, securing it with the included
plastic screw ring. Use the large cable gland to run sensor and signal wires
through the enclosure and keep things weathertight. Drill a 5/8-inch hole
between the power jack and the other case cover hole. There is a small lip
on the case: Dremel or shave it down a bit to have the gland fit snugly
against the outer side.

It is best to make mounting holes in the back of the case now, if they'll be
needed to screw the case into a wall. Doing this later in the build would
probably be harder, given the amount of items you'll place inside the box.

Only small modifications are needed for the circuit board. The corners
should be cut just a bit and the left hole expanded slightly to allow the
board to fit snugly when screwed on one brass mounting hole. Fit a small
8-32 screw on the right, and optionally place a standoff through the left
hole.

Advanced Projects 1563

Populating the Board

Figure 6-23 shows the parts placement.

Bluefruit EZ-Link

' Magnetic Contact 2

Terminal
Block

Magnetic Contact 3

—— AN
Adafruit LiPo Charger LiPo Battery

Made with [Fritzing.org

Figure 6-23. Wiring diagram for the Trinket alarm system

Wiring proceeds as follows:

1. Use two pieces of female header, five pins each, to mount the Trinket
to the board. As this project uses Trinket pin #3, you'll need to be able
to easily take the Trinket off the circuit board for programming. See
“Trinket Occupancy Display” on page 135 for how the headers are
mounted.

2. Place single male pins on the negative (ground) power line, the Trinket
BAT+ pin, and Trinket pin #0; you'll use these to connect the Bluefruit
later. You can also use hookup wire connected directly to the circuit
board, but the wires will not be easy to disconnect if there are issues.

3. Four resistors provide the analog divider to multiplex three sensors.
The 1,500-ohm resistor (the large one in Figure 6-24; your resistor
may be smaller) goes between the Trinket 3.3-volt regulated pin and
the common resistor junction. Each of the other resistors is connected
to this common area and to Trinket pin #3 (which is also analog pin 3).
Four wires are run off-board to connect the sensors via the Eurostyle
terminal block.

4. The black wire connects the ground, and the red wire connects the
power. The board receives power via a JST connector with attached
wires that comes with the Adafruit LiPo charger board (near the top of
the photos). The red wire goes to the Trinket BAT+ pin, and the black to
the pin labeled GND. Other parts of the circuit draw regulated power
from the pin marked 3V (which is regulated by the Trinket to 3.3 volts
and provides up to 150 milliamps).

1564 Getting Started with Adafruit Trinket

5. The connector for the PIR (infrared sensor) is also connected to regu-
lated power (bottom of Figure 6-24).

Figure 6-24. Wiring the alarm circuit board and connectors

Double-check your connections, or even triple-check them!

Place the battery in the case as shown in Figure 6-25. The LiPo charger
board goes on top, near the power connector. Double-sided foam tape may
help here. Solder or plug in the wires from the power connector to the DC
IN connections on the charger (near the USB connector). The female—
male connectors on the DC IN on the LiPo board make it easier to connect
and disconnect, but you must carefully observe the polarity every time you
make the connections. If the project ever fails to light up, check these
wires.

At this point, you should plug in the 5-volt power supply and charge the
LiPo battery.

Screw the wired circuit board into the threaded connector with an 8-32
1/2" screw (not provided with the enclosure) or otherwise secure it as
shown in Figure 6-26. A plastic standoff or other resting point in the oppo-
site mounting hole area is a good idea. | used the remaining threads of the
standoff above the nut to secure another standoff for the PIR later.

Wire the three sensor wires to a terminal strip. The strip allows wires to be
connected and disconnected as the system is installed. The connections
are, from the bottom: the common (ground) connection, then the PIR
switch wire (yellow), then magnetic sensor #2 and magnetic sensor #3 at
the top. This allows bench testing of the alarm box. For the final
installation, you will remove the connections from the terminal block and
use two-conductor wire to connect the sensors around the room being
monitored.

Advanced Projects 155

Figure 6-25. Placing the battery and battery charging board in the alarm
mounting box

Figure 6-26. Mounting the project in the box with wiring

166 Getting Started with Adafruit Trinket

Code

The code for an alarm with three sensors on one branch is in Example 6-4
(also available from the repository for this book, directory Chapter 6 Code,
subdirectory Chapter6_03Alarm).

This configuration has the sensors tied into resistors that are feeding Trin-
ket pin #3 (which is also analog pin 3). You must program the Trinket out of
the circuit, as pins #3 and #4 are shared with the USB connection.

The program uses the SoftwareSerial library to talk via the Bluefruit EZ-
Link on Trinket pin #0 for transmit, pin #2 for receive. You can eliminate
the requirement to specify a receive pin (and shrink the code slightly) with
the SendOnlySoftwareSerial library, first used in Chapter 3. This would also
allow you to use Trinket pin #2 (analog 1) for alarms, freeing pin #3, which
is shared with USB. If you make such changes, be sure you make the corre-
sponding changes with both the circuit and the code.

Trinket pin #1, which has the onboard red LED, is used as an additional
annunciator to indicate which sensors are tripped. When the alarm is set to
no alarms, the LED does not blink. It blinks from one to seven times,
depending on which sensors are tripped (in the alarm state). The blink pat-
ternis 1 for Sensor 1/PIR, 2 for Sensor 2, 3 for Sensor 3, 4 for 1and 2, 5 for
land 3, 6 for 2 and 3, and 7 for all sensors tripped. If you decide to use Trin-
ket pin #1 for other purposes, you can do so, but with the LED in-circuit you
need to take that into account as previously discussed. For Trinket, the
internal pull-up resistor, if enabled, is too weak. You may use a fairly low-
value external pull-up resistor, nominally 1,000 ohms, if you decide to use
the pin for sensors.

In the code for the project, enabling DEBUG (uncommenting the line //
#define DEBUG by deleting the // characters) will output the alarm values
for the analog pin to the serial connection. You should do this once your
circuit is together to ensure the values read by your circuit give values
understood by the code as alarms are set off.

Trip each combination of sensors and record the value for the analog pin
displayed on the serial line. Change the code line that has uint16_t values
to the values you find. On the bench this process takes less than five
minutes. If you have problems with the final install giving errors, try this
process again because the resistance of the wiring may change the values.

Example 6-4. Sketch to operate the Trinket Alarm
System
/* Trinket Alarm System */

#tdefine SerialPin 0 // Serial via Bluefruit EZ-Link on this pin
#define LEDpin 1 // Use Trinket LED for displaying tripped sensors

Advanced Projects 157

#tdefine SensorPin 3 // A3, which is pin #3, has resistor network to read
// 3 normally closed sensors

//#define DEBUG (1]

#include <SoftwareSerial.h> // Software Serial library @

SoftwareSerial Serial(2,0); [3)
const uint8_t numSensors = 3; // number of sensors @
const uint8_t states = 8; // 2"numsensors

uint16_t values[8] = {541, 685, 661, 614, 840, 780, 776, 997};
char *textval[8] = {"Set","PIR", "2", "3","PIR+2","PIR+3","2+3","All"}; @

void setup() {
pinMode(LEDpin, OUTPUT); // Set pin #1 to output for LED blinking
pinMode(SensorPin, INPUT); // Set analog pin for input
Serial.begin(9600); // Send status information via serial
Serial.println("Alarm System"); @

}

void loop() {
int8_t contact; // Read alarm loops (returns -1 if a read error)

contact = readContact(SensorPin); @

if(contact »>= 1) { // If any value greater than o0 (set),
Blink(LEDpin, contact); // we have an alarm! Blink LED corresponding to
Serial.print("Alarm! "); // that sensor(s) and write to Bluetooth.
Serial.println(textval[contact]);

else if(contact < 0) { // A bad analog read was done. If you get errors
Serial.print("Error"); // set DEBUG, walk test, record values, and
// update code with analogRead values.
else {
Serial.println("Set"); // Alarm is set (no sensors tripped)

delay(500); // We do not need to poll the sensors often (changeable)
}

int8_t readContact(uint8_t TrinketPin) { (s}
// Returns the number corresponding to sensor values.
// TrinketPin is the analog pin on the Trinket (A1=#2, A2=#4, A3=#3).

const int variance = 8; // Analog readings can vary, value for +-variance
int contact = 0;

uint16_t readval = 0;

readval = analogRead(TrinketPin); // Check the pin

#ifdef DEBUG
Serial.print(": Sensor read value: ");
Serial.println(readval);

#endif

for(uint8_t i=0; i<states; i++) { // If reading is near state value,
// return that state
if(readval >= (values[i]-variance) && readval <= (values[i]+variance))

{

return(i);

168 Getting Started with Adafruit Trinket

}

}

}

return -1; // Value not one of the alarm system values

void Blink(uint8 t pin, uint8_t times) { o

—

(9]

for(uint8_t i=1; i<=times; i++) {
digitalWrite(pin, HIGH);
delay(85);
digitalwrite(pin, LOW);
delay(85);

If this line is uncommented, the debugging code will be included.

Trinket pin #0 connects to the Bluefruit EZ-Link RX pin for serial
communication. You may use a terminal program (such as the free-
ware PuTTY for Windows) to get the alerts over Bluetooth. A
Processing or Python script looking for alarms could also be used to
automate monitoring.

Serial transmission on Trinket pin #0, receive pin #2 (not used here).
SendOnlySoftwareSerial may also be used for the transmission
without receive. If you decide to use pin #2 for a sensor branch, this
should be changed.

This sets the number of normally closed sensors you'll be multiplex-
ing on one analog pin. If you have two sensors, you can leave the one
resistor open and adjust the text values.

Text values are mapped to all the different states of sensor open and
close to alert the monitor. This can also be done at the receive end if
anumber is passed instead of text.

The receiver can look for this text to determine when the alarm has
been turned on or restarted.

If the alarm sensor configuration is changed (more sensors, etc.),
change the readContacts function.

readContacts should return o for no alarm, -1 for errors, or a number
to indicate which alarm or alarms are going off. The logic can be
changed here to add more sensors.

This routine toggles a pin the number of times requested. This sketch
uses it on an LED pin to indicate which sensors have been triggered.

If you uncomment the DEBUG line, remember to comment it out for your
final installation.

Advanced Projects 159

Final Assembly
Ensure you have made all the connections noted in Figure 6-23.

Program the Trinket out of the circuit, then place in the headers on the cir-
cuit board.

Check your power connections one more time. Plug the circuit board
power connector into the LOAD connector on the LiPo charger. Lay the
LiPo charger board on top of the battery.

Next, add the PIR sensor. Connect the PIR, ensuring the red wire is con-
nected to the 5-volt power supply and the black wire connects to GND.
The PIR has two orange variable resistors, one to adjust sensitivity and one
for latch time. The latch time can be fairly short (we are sensing any
change). The sensitivity should be turned down at first and may be adjus-
ted when making the final installation.

You can place the PIR outside the enclosure but the nice clear case begs
for an inside mounting scheme. There is enough clearance, but just
enough. For best sensitivity, you may want to use a round hole for the lens
to come out (with some sealant).

The Bluefruit is connected to the circuit board as follows:

* BAT+ (line into Trinket) goes to the Bluefruit Vin pin
» Ground (=) goes to the Bluefruit GND pin
+ Trinket pin #0 goes to the Bluefruit RX pin

Tuck the Bluefruit transceiver in the case on its side. Figure 6-27 shows all
the parts in the enclosure, a tight fit indeed.

Figure 6-27. Final assembly of parts into the project case shows a snug fit

160 Getting Started with Adafruit Trinket

Test

Power up the circuit. The battery may charge with the CHRG light lit on the
LiPo charger circuit board. The Trinket's green LED should be lit. If not, dis-
connect the power and check your connections.

When working correctly, the red LED on the Trinket will blink, showing the
sensors that are tripped—this is normal, as the PIR sensor probably sees
you moving and you might not have the magnets against the magnetic
sensors. Place the magnets next to the sensors and aim the PIR away from
you. The system should set up (no alarms are tripped). Then, when you
move in front of a sensor, it should blink once a second or so, with the num-
ber of blinks indicating which sensors tripped, as follows:

No blinks
Secure

One blink
PIR tripped

Two blinks
Magnetic Sensor 2 tripped

Three blinks
Magnetic Sensor 3 tripped

Four blinks
PIR and Magnetic Sensor 2 tripped

Five blinks
PIR and Magnetic Sensor 3 tripped

Six blinks
Both magnetic sensors tripped

Seven blinks
All sensors tripped

If the PIR is not indicating correctly, move the orange potentiometers to
reduce or increase sensitivity. If it will not “go off,” reduce the latch time.

The system state is also broadcast via serial to the Adafruit Bluefruit EZ-
Link at 9,600 baud. It transmits up to 10 meters (33 feet).

With a laptop or PC with a Bluetooth receiver, determine which serial port
is connected to Bluetooth for your operating system. (For Windows, go to
Control Panel—Devices and Printers; if you do not see Adafruit Bluefruit
listed, use the Bluetooth program in the system tray (lower right, tiny blue
B icon) to add it to your Bluetooth device list. You may have to press the
pair button on the Bluefruit board to have it recognized.

Advanced Projects 161

See http://bit.ly/Bluefruit_EZ-Link for instructions on pairing
to Bluefruit EZ-Link on Windows, Mac, or Linux.

To listen in on the serial stream, you should load a terminal program. For
Windows, you may again use PuTTY; for Mac or Linux, use Terminal.

Open your terminal window and set it to work on a serial stream. Set your
serial port (on Windows this is COMxx, where xx is the number of the port
you found in Control Panel earlier; on Mac and Linux, it will be something
like /dev/cu.AdafruitEZLink followed by some other characters). The baud
rate is 9,600. When you press the Open button, a black terminal screen will
be displayed with white text output from the Bluetooth serial stream, simi-
lar to Figure 6-28.

[& comzo - puTTy — . » o (|

Figure 6-28. Serial terminal output from the Bluetooth sensor displaying
alarm events

The final project with the clear weatherproof case cover is shown in
Figure 6-29.

Do a final test of the sensor function. Trip (activate) each sensor in turn
and make sure you get the indications that were programmed in for annun-
ciation. If you seem to have a magnetic sensor stuck on or that never acti-
vates, check your wiring.

You are now ready to perform the final installation. You will need to remove
the magnetic sensor connections as these will be done with wires in the
permanent location.

162 Getting Started with Adafruit Trinket

http://bit.ly/Bluefruit_EZ-Link

Figure 6-29. The final alarm with cover, ready to install

Troubleshooting

The Bluefruit should have both red and blue flashing LEDs when transmit-
ting. If not, double-check that Trinket pin #0 is connected to Bluefruit RX
and that you have GND and Vin connected to circuit ground and the BAT+
terminal, respectively.

For information on connecting to Bluefruit with different operating sys-
tems, refer to Adafruit’s Bluefruit EZ-Link tutorial.

Going Further

Customizing this type of alarm is very straightforward, hardware-wise. You
will need to ensure that the polling of all your sensors and branches is fully
accounted for in software and change the annunciation type or text
appropriately.

Alarm systems can be as complex as one can dream. You can create a dis-
arm function, either wired or wireless, that says “I'm a good guy.” You may
consider a clock function that arms or disarms the system depending on

Advanced Projects 163

https://learn.adafruit.com/introducing-bluefruit-ez-link/pair-and-test

the time of day. This could even be done by the monitoring PC, via a com-
mand received via Bluetooth. At a certain point, your expansion plans
could exceed the capabilities of the Trinket. Still, this project demonstrates
that quite complex alarm functions can be built within the Trinket's
capabilities.

Bluetooth Communication

Bluetooth use continues to grow as communication with consumer elec-
tronics and peripherals expands. Bluetooth is one of the communica-
tion methods often used for the Internet of Things. The benefits of using
Bluetooth instead of WiFi or other technologies include:

» The interface is usually via a simple serial connection.
» The range in some modes can be many meters.
+ Coding is easy.

* Interfaces with a wide variety of commercial devices well.
Disadvantages include the following:

 It's relatively insecure.
* It's power hungry if power conservation is not built-in.

* It can be expensive for microcontroller use compared to simple
radios.

« It's susceptible to radio interference in the 2.4 GHz band (WiFi, micro-
wave ovens, etc.).

Adding Bluetooth radios to mobile products is standard now. The micro-
controller industry is just catching up with consumer electronics. For years,
Bluetooth hobby modules were expensive, were difficult to interface with,
or were supplied in awkward form factors. This finally appears to be chang-
ing, due to new innovations. When shopping for a Bluetooth radio, be cog-
nizant of your needs and the market before you decide on a solution.

The alarm project uses a modern board by Adafruit called the Bluefruit EZ-
Link, shown in Figure 6-30. The “EZ" comes from the fact that the pinout
and use are identical to the FTDI Friend board used in some other projects
in this book. Adafruit also makes the Bluefruit in a standard Arduino shield
format. Another standalone version, called Bluefruit EZ-Key, transmits key-
strokes if pins are activated. The standalone board could actually make a
very simple transmitter for switch closures, making for an alarm system
where the sensor wires are replaced by Bluetooth.

164 Getting Started with Adafruit Trinket

| BLUEFRUIT
hlug[;un EZ-LINK

= FCC: SGOBLUEFR

Figure 6-30. The Adafruit Bluefruit EZ-Link

Most Arduino-compatible adapters are compatible with Bluetooth versions
2.1 and 3. Newer devices based on Bluetooth 4.0, including Bluetooth Low
Energy (BT LE), are appearing on the hobby scene. BT LE provides fea-
tures including better security, much lower power consumption, compati-
bility with newer consumer electronics, and more. Adafruit has introduced
a Bluetooth LE module called Bluefruit LE based on the low-energy
nRF8001 chip.

It is easier than ever to affordably add Bluetooth to your microcontroller
projects, including those projects using a Trinket.

Trinket Toy Animal

Toy animals are a staple of children’s toy boxes and Valentine's Day gifts.
There is a resurgence of interest in making animals more interactive, as
Makers desire items that move, blink and glow—maybe not quite like Teddy
Ruxpin, but with features that will delight.

This project provides ideas for creating stuffed, paper craft, or other toy
animals with characteristics you dream up. You can choose your animal,
make it move, and have it make sounds. The project demonstrates how to
use a servo motor, a piezo speaker, and a photocell to provide interactivity.
Technically, you do not even have to use an animal—the techniques
described here are suitable for simple robots or other items.

Choosing Your Animal

This project demonstrates animating a kiwi bird, shown in Figure 6-31. The
electronics dictate the minimum size of the animal you choose. It may be
as large as you want (with suitable changes for the servo and power). The

Advanced Projects 165

Beanie Baby bird here (named Beak) seemed well suited to animation. A
moderate-sized Angry Bird toy may be a good alternative. You can use
existing animals or fabricate your own with paper, cloth, or 3D printing.

Figure 6-31. The animated toy

Parts List

« Trinket 3V, Adafruit #1500 or Maker Shed #MKAD70

» Perma-proto quarter-sized breadboard (single), Adafruit #1608 or
Maker Shed #MKAD48

» Cadmium sulfide photocell, Adafruit #161

» Piezo speaker/buzzer, Adafruit #160 or Maker Shed #MSPTO1

+ Micro servo, Adafruit #169, Maker Shed #MKMSERVO, or similar
« 3 x AAA battery holder, Adafruit #727 or Maker Shed #MKAD61
« Female header, Adafruit #598 or similar

» Rainbow female—female cable, Adafruit #793, #266, or similar

166 Getting Started with Adafruit Trinket

» Optional: Male header, Adafruit #392 or similar
» Hookup wire, Adafruit #289, #288, #290, or similar

» 10,000-ohm (10K) potentiometer (other values okay), Adafruit #562
or similar

+ 1,000-ohm resistor

« Stiff house wire or stiff craft wire, several inches
« 3 AAA batteries

+ Screw and nut

» Optional: Velcro

Tools

+ Drilland bits

+ Soldering iron and solder

+ Diagonal pliers for cutting wires and header
» Wire strippers

 Scissors or seam ripper

+ Glue

+ Needle and thread

Circuit

The circuit connections, shown in Figure 6-32, are a bit simpler than in the
other projects in this chapter. This project uses a Trinket 3V and will work
with Gemma as well.

Start by soldering male header pins to the Trinket, as directed in “Prepar-
ing the Trinket” on page 17.

We'll use a quarter-sized Adafruit perma-proto board as the base. Hookup
wire interconnects the components as shown in Figure 6-32. You'll use the
1,000-ohm (1K) resistor for the photocell circuit.

You can use female headers to make the Trinket removable from the proto-
board, similar to other projects in this chapter. Cut two five-pin sections.
You can use male headers to connect off-board components: two two-pin
and one three-pin section connect the servo, piezo, and photocell. Make
the connections via strips of female—female jumper wires, or you can use
any flexible wire. Using headers allows for easy removal of the components
from the project as the build progresses or while programming the Trinket.

Advanced Projects 167

Piezo
Speaker

Micro Servo

Line: |os e e S vee e Wire to
! : Move
: Animal
Cds
Photocell

Made with [Fritzing.org
Figure 6-32. The Trinket Toy Animal wiring diagram

The perma-proto circuit board may be cut at row B to make the board
smaller if your animal is more petite than can be accommodated by the full
board.

The servo is mounted onto the perma-proto board to provide a base for
moving the servo (it needs something to push against). You can mount it in
many ways, but it generally needs a firm mount to achieve the movement
you may want. | enlarged the proto mounting hole slightly with a drill bit to
allow a small screw to pass through at the correct place.

Circuit Variations

No single build is perfectly suited to every project. You may consider the
following changes to the project:

Trinket
You can use a Trinket 5V with a 5-volt supply, perhaps 4 AAA or AA bat-
teries. The servo is generally 5-volt, so be careful running at 6 volts
(check the servo datasheet). You can put a silicon diode in series with
a 6-volt supply to drop the voltage by about 0.7 volts. A Gemma would

168 Getting Started with Adafruit Trinket

also work well, especially if you want to use a LiPo battery, but proto
mounting would be more of a challenge.

Photocell
If you want the circuit to always run when switched on, you can elimi-
nate the photocell and 1,000-ohm resistor. You will need to remove the
analogRead function call and the if statement in the code that acts on
the reading.

Speaker
If you want louder sounds, you can feed the Trinket pin #1 sounds to a
transistor or amplifier to drive a more conventional speaker.

Servo
If you use a larger servo, you may need more battery capacity. If you
do not need your animal to move, you can eliminate the servo and the
wire from Trinket pin #0, power, and ground. You could then trim the
amount of proto board required by cutting at line 12.

Battery

The Trinket 3V runs well on LiPo batteries stocked by Adafruit. The
3.7V 1,200 mAh is a good size and capacity, but smaller sizes work as
well (with reduced run time). If you use a LiPo, you may want some
type of on/off switch. AA and AAA battery packs may have the switch
built in. | fashioned an ad hoc JST male connector for a LiPo with two
spare header pins in the upper-left corner of the circuit board. A
Gemma or Trinket version 1.1 with a soldered JST connector would
already have the JST battery connection, if you want to consider that
as an option.

Code

The software in Example 6-5 is designed for a bird. You can change the
chirp function for one of the other sounds discussed in Appendix A.

The code reads the photocell, and if the value is less than a certain amount
(e.g., if you pet the animal, lowering the light level), the animal makes
sounds and moves. You can change the sensitivity of the photocell, cur-
rently 800, to a value between 200 and 1100, depending on the ambient light
expected.

The register/interrupt code allows the servo to be refreshed periodically to
have it stay where it is commanded to. The standard Arduino IDE Servo
library does not work for Trinket/Gemma, so the Adafruit SoftServo library
is used. See “ATtiny-Optimized Libraries” on page 39 for library locations
and “Installing Libraries” on page 41 for instructions on installing libraries.

The code may be downloaded from the GitHub repository for this book
(directory Chapter 6 Code, subdirectory Chapter6_05Animal).

Advanced Projects 169

Example 6-5. The Trinket Toy Animal main sketch

/* Trinket Toy Animal */
#include <Adafruit SoftServo.h> // SoftwareServo (works on non-PWM pins)

#define SERVO1PIN 0 // Servo control line (orange) on Trinket pin #0
#tdefine SPEAKER 1 // Piezo speaker on pin #1
#define PHOTOCELL 1 // CdS photocell on pin #2 (analog pin 1)

Adafruit_SoftServo myServol; // Create servo object
int16_t servoPosition; // Servo position

void setup() {
OCROA = OXAF;)
TIMSK |= BV(OCIEOA);

servoPosition = 90; // Tell servo to go to midway
myServol.attach(SERVO1PIN); // Attach the servo to pin #0 on Trinket
myServol.write(servoPosition); // and move servo
delay(15); // Wait 15 ms for servo to reach the position
pinMode (SPEAKER,OUTPUT); @

}

void loop() {

uint16_t light reading;

if(servoPosition != 0) [3)
servoPosition = 0; // If it's up, go down & vice versa

else
servoPosition = 180;

light_reading = analogRead(PHOTOCELL); @

if(light_reading < 800) { // If the photocell is dark, we're petting
chirp(); // the animal, so make sound ...
myServol.write(servoPosition); // and tell servo to move

}
delay(1000); // Wait between chirps (can be changed)
}

void chirp() { // Generate the Bird Chirp sound
for(uint8_t i=200; i>180; i--)
playTone(i,9);

void playTone(int16_t tonevalue, int duration) { (5)
for (long i = 0; i < duration * 1000L; i += tonevalue * 2) {
digitalWrite(SPEAKER, HICH);
delayMicroseconds(tonevalue);
digitalWrite(SPEAKER, LOW);
delayMicroseconds(tonevalue);
}
}

volatile uint8_t counter = 0; (6]
SIGNAL(TIMERO_COMPA vect) {
// This gets called every 2 milliseconds

170 Getting Started with Adafruit Trinket

counter += 2;
// Every 20 milliseconds, refresh the servo!
if (counter >= 20) {

counter = 0;

myServol.refresh();

}
}
(1] This code sets up the servo refresh timer.
(2] If you forget to set the speaker as an output, you won't hear a sound!
(3] The servo position is changed every loop, but it's only activated if
you're petting the animal.
o Read the photocell. If the light level is below a certain value, some-

thing is blocking it; this is how we determine the animal is being
petted.

(5] This toggles a pin to play a tone on a piezo speaker.

(6] This routine refreshes the servo every 20 milliseconds as required.

Preparing the Toy

The animal | chose is a classic Beanie Baby toy. The code makes a chirping
sound from the piezo, and the servo moves a wire that animates the beak.

As shown in Figure 6-33, the seams on the bottom of the bird must be
carefully cut with a seam ripper or scissors. Remove the plastic “beans”
and fluff stuffing, saving the fluff for later. Cut a piece of stiff wire, which
you'll stuff up into the head and into the beak shortly. A spare piece of
house wiring (10 to 12 gauge) works well, but anything fairly stiff but bend-
able will do.

Push the photocell leads through the seam at the forehead, as shown in
Figure 6-34. Use a dot of glue to attach the photocell to the animal fur. Now
for the tricky part: carefully solder a piece of two-conductor flexible wire
(like rainbow wire with connectors cut off one end) to trimmed photocell
leads. You do not want to burn the fur with your soldering iron. Protect the
soldered ends from flexing or touching with hot glue, sugru, or other
material.

Drill a hole in the servo horn to match the diameter of the stiff wire for the
head. The single-arm horn works fine, but the double-arm or circular horn
will work as well. Strip and bend the end of the wire so it will fit on the servo
horn and stay somewhat secure, but still move when needed.

Push the wire up through the beak. Bend the other (stripped) end slightly
and thread it into the servo horn.

Advanced Projects 171

Figure 6-33. Preparing the stuffed animal by removing the stuffing (care-
fully)

If you want to maximize the speaker sound, you can place it so the piezo
hole is exposed to the exterior of the animal. The fabric does not mute the
chirp sound by much with such a shrill tone.

Make all the connections and test. If something does not work, remove the
circuit and check the connections and the battery. Remember the photo-
cell must be covered for the sound and movement to start; light will make it
stop.

Take some of the interior fluff and stuff the head. Fit the electronics and
wire to the servo together and place them inside the bird. You can use
some additional stuffing to make the bird fatter, but do not impede the wire
from moving. The “beans” should not be reused in the project as they may
leak all over the place.

Once you have everything assembled to your satisfaction, you can stitch
the body. However, you need to be able to switch the batteries on and off
and change them when depleted. Sewing on some Velcro is a good way to
seal things.

172 Getting Started with Adafruit Trinket

Figure 6-34. Placing the photocell and servo wire inside the animal

Use

When switched on in the light, the bird should sit still. Place your hand so
that it blocks the light (petting the head), and the head should move and
you should hear the chirp sound.

The fun part of this project is that you can use these techniques to animate
any animal or object any way you want. Do you want an animated cat, dog,
or owl? It is possible. Paper, plastic, 3D-printed objects—they all work very
well.

You can also animate other objects, like small robots. For a more robust
robot, the next project uses a sensor and two servos to make a robotic
rover.

Trinket Rover Robot

The science, technology, engineering, (art,) and math (STEM/STEAM) cur-
riculum is gaining momentum in education. It is exciting to see so many
new Makers and engineers learning how fun it is to Make! Rick Winscot
wanted to design a low-cost robot that anyone with access to a 3D printer
could build.

Here is his solution: an autonomous micro rover based on the Trinket,
shown in Figure 6-35.

Advanced Projects 173

Figure 6-35. The Trinket Rover Robot

When Rick started designing the rover, he ran into a significant obstacle
trying to find inexpensive tracks or treads. He had some success 3D print-
ing them with flexible filament, but the total cost was too high. That is
when he stumbled onto chain bracelets (Figure 6-36), from Oriental Trad-
ing. You can buy a dozen for less than $10, which will supply treads for six
rovers.

Figure 6-36. Chain bracelets repurposed as rover treads

The pattern is slightly different on the inside and outside, as you can see in
the right-hand image in Figure 6-36: rounded (left) and flat (right). The
rounded side fits in the wheel/sprocket perfectly.

174 Getting Started with Adafruit Trinket

Parts List

« Trinket 3V, Adafruit #1500 or Maker Shed #MKAD70

» Tiny breadboard, Adafruit #65 or Maker Shed #MKKN1-B

» Maxbotix ultrasonic rangefinder LV-EZ1, Adafruit #172
OR

Parallax PING))) ultrasonic sensor, Parallax #8015 or Maker Shed
#MKPX5 (this is the sensor used in the pictures; using others may
require additional work)

OR

Grove ultrasonic rangefinder, Speed Studio #SEN1073P or Maker
Shed #MKSEEEE27

+ 4xAA battery holder, Adafruit #3830

« Two continuous rotation (CR) micro-sized servos. You can convert
two standard micro servos per http://bit.ly/continuous_rotation
(advanced) or buy them from a robotics supplier such as Robot-
Shop.com (#RB-Fit-02). Unfortunately, Adafruit's CR servos are stan-
dard size, not micro

* Rainbow female—male jumpers, 6” (150 mm), Adafruit #826
» Extra-long male—male pins, Adafruit #400 or similar

3 M3 10 mm screws
1 M3 hex nut
» Double-sided foam tape

* Chain bracelets, Oriental Trading #IN-13605773 or similar
(color availability may vary by season)

 Plastic cement or 5-minute epoxy

Tools

» 3D printer (or send files to a 3D print shop)
+ Drilland bits

+ Screwdriver

» Sandpaper

» Diagonal cutters

» Optional: M3 thread tap

Advanced Projects 175

http://bit.ly/continuous_rotation
http://robotshop.com
http://robotshop.com

3D Printing

The rover is composed of seven plastic parts. (Rick says the moustache is
not optional.) The model archive includes a small and large chassis and
three different sonar mounts. Depending on the printer, you may be able to
squeeze all of the parts into a single print.

You can download the 3D (.st/) files at http.//bit.ly/rover_3D_files.

3D printers are now located in many places, including schools and Maker-
spaces. A growing number of companies also are providing 3D printing
services.

When you get your parts, inspect them for rough places. Use diagonal cut-
ters if any stray filaments protrude on a piece. Use sandpaper on any piece
that appears rough. A good print will not have much variation in the layers.
If you print your own and find the pieces uneven, you may wish to calibrate
the printer or check your material.

Build

You might need to tap the axle holes. Alternatively, you could warm/soften
the plastic with heat and thread the hole with the screw, but be care-
ful! Make sure that the wheel on the front does not bind (see Figure 6-37).
You might need to sand around the axle a bit. Screw the wheels on per
Figure 6-38.

The mounting hole in the wheel is purposefully small to allow for the widest
possible screw size. Widen the hole with a drill bit that is slightly larger than
the threads of your screw.

Figure 6-37. Fitting the wheels onto the rover

Insert an M3 hex nut and screw the sonar mount to the chassis, as shown
in Figure 6-39.

You'll need pilot holes (Figure 6-40) to mount the servo to the chassis. A
1/16-inch bit will do nicely.

176 Getting Started with Adafruit Trinket

http://bit.ly/rover_3D_files

Figure 6-38. The screw holds the wheel on the body

Go slowly, securing the servos to the chassis with screws, as shown in
Figure 6-41. If you hear any kind of cracking, you might want to carefully
warm or soften the plastic a bit before proceeding.

Now to work on the rear wheels. Grab a dual-arm servo horn and trim it to
fit a wheel. You can use model cement to attach the servo horn to the
wheel (Figure 6-42), but it will take an hour or so before it's dry enough for
final assembly (Figure 6-43); 5-minute epoxy might be a better alternative.

Figure 6-39. Installing the sensor mount

Repeat these steps for the other wheel. When the wheels are fully dry,
mount the wheels to the servos with the screws that came with the servos.
Carefully place the treads onto the wheels.

Advanced Projects 177

Figure 6-40. Drill the pilot holes to mount the servos on the chassis

Figure 6-42. Gluing servo horns onto the powered wheels

178 Getting Started with Adafruit Trinket

Figure 6-43. The finished powered wheel
Wiring
All three distance sensor options in the parts list work fantastically. All you

need is GND, V¢c, and one pin for the measurement signal. Snap the
appropriate sonar into the mount, as shown in Figure 6-44.

Figure 6-44. Connecting and mounting the sensor

Insert extra-long male—male pins, shown in Figure 6-45, into the female
servo cable to convert to male pins.

The circuit diagram is in Figure 6-46. Wire all the required connections.
With the servos, remember that ground is often brown and signal is
orange. Red is power.

Advanced Projects 179

Figure 6-45. Make the servo cable pins male for breadboard use

Made with [Fritzing.org

Figure 6-46. Wiring diagram for the Trinket Rover

Place batteries in the holder. Secure the battery holder to the breadboard
with double-sided tape.

180 Getting Started with Adafruit Trinket

Code

You'll use the Adafruit SoftServo library for this project. See "ATtiny-
Optimized Libraries” on page 39 for library locations and “Installing Libra-

ries” on page 41 for instructions on installing libraries.

The sketch in Example 6-6 uses the Parallax Ping))) distance sensor and is
a starting point. You can change it to use a different sensor or to add more

behaviors.

You can download the code from the GitHub repository for this

book (directory Chapter 6 Code, subdirectory Chapter6_06Rover).

Example 6-6. Sketch to operate the Trinket Rover
Robot

/* Trinket Rover Version 1.0 Rick Winscot */

#include <Adafruit_SoftServo.h>

#define SERVO1PIN 0 // Servo control line (orange) on Trinket pin #0
#define SERVO2PIN 1 // Servo control line (orange) on Trinket pin #1

Adafruit_SoftServo servo_left, servo rght;

const int sonar = 2; // Sensor on Trinket pin #2
const int left_speed = 75; @

const int rght speed = 90;
const int obstacle = 8; 2]
const int back track = 100; @

long duration, inches, cm;

void setup() {
servo_left.attach(SERVO1PIN); // Attach servos...
servo_rght.attach(SERVO2PIN); // and off we go!

}

void loop() {
servo_left.write(left_speed - cm); // Setting servos
servo_left.refresh(); // in forward motion
servo_rght.write(rght_speed + cm);
servo_rght.refresh();

delay(15);

duration = 0; (4]
inches = 0;

cm = 0;

)
pinMode(sonar, OUTPUT); [5)
digitalWrite(sonar, LOW);
delayMicroseconds(2);
digitalWrite(sonar, HIGH);
delayMicroseconds(5);
digitalWrite(sonar, LOW);
pinMode(sonar, INPUT); @
duration = pulseIn(sonar, HICH);

Advanced Projects

181

inches = microsecondsToInches(duration); // Convert time into distance
cm = microsecondsToCentimeters(duration);
if (cm < obstacle) { (7]

for (int i = 0; i < back_track; i++) { @

}
}
}

servo_left.write(150);
servo_left.refresh();
servo_rght.write(50);
servo_rght.refresh();
delay(15);

long microsecondsToInches(long microseconds) {
return microseconds / 74 / 2; @

}

long microsecondsToCentimeters(long microseconds) {
return microseconds / 29 / 2; @

}
o

This is a moderate forward speed for both servos. Given the servos’
orientation, one will be going forward, and the other backward. You
may need to adjust these slightly to get the rover to move straight
forward.

This is the number in centimeters that the rover will reverse and try
to navigate around.

Multiplier used to determine how far the rover will back up.

Establish variables for the duration of the ping, and the distance
result in inches and centimeters.

The ping is triggered by a HIGH pulse of 2 or more pseconds. Give a
short LOW pulse beforehand to ensure a clean HIGH pulse.

The sonar pin is used to read the signal from the PING))): a HIGH
pulse whose duration is the time (in microseconds) from the sending
of the ping to the reception of its echo off an object.

back track * delay(15) is the distance the rover will back up during
obstacle avoidance.

These are preselected numbers for moving the rover in a defined
way. The rover always performs the same maneuver in avoiding an
obstacle. Replace the code here with your own to define alterna-
tive obstacle avoidance behavior.

According to the Parallax datasheet for the PING))), there are 73.746
microseconds per inch (i.e., sound travels at 1,130 feet per second).
This gives the distance traveled by the ping, outbound and return, so
divide by 2 to get the distance to the obstacle.

182 Getting Started with Adafruit Trinket

http://bit.ly/Parallax_datasheet

® The speed of sound is 340 m/s, or 29 us/cm. The ping travels out
and back, so to find the distance to the object, take half of the dis-
tance traveled.

Program the Trinket and plug it into the breadboard. Be sure the Trinket is
oriented correctly and in the correct pin locations.

Switch on the rover. The Trinket should power on, and it should move and
avoid obstacles! If you have problems, check your connections and
programming.

Going Further

Other creative Makers have built robotics projects using the Trinket. Some
use it as the main controller; others as a servo, a sensor processor, or both.
An obvious use would be as an add-on processor for the Raspberry Pi. The
Pi cannot do real-time processing and driving as well as the Arduino
because of overhead in the Linux operating system. The addition of the
Trinket can be a perfect fit. You can interface a Pi and Trinket via Software-
Serial on Trinket pins #3 and #4; just be sure to program the Trinket
without those pins being connected.

The next project highlights another facet of the Trinket: its ability to pro-
duce better sounds than those in previous projects. To provide that func-
tionality, we'll use the final capability of the Universal Serial Interface:
Serial Peripheral Interconnect (SPI).

SPI Communications

We've explored communications with the Trinket throughout this book.
In Chapter 5, we looked at serial communication and 12C. The final mode of
serial communications offered by the ATtiny85's US| interface is the Serial
Peripheral Interface. We'll use SPI in the next project to move data at high
speeds between the Trinket and a flash memory chip.

In SPI, devices communicate in a master/slave mode where the master
device initiates the data transfer. Multiple slave devices are allowed with
individual slave select lines, as shown in Figure 6-47. Each device uses at
least four digital pins for the connection:

SCLK
Serial Clock (output from master)

MOSI
Master Output, Slave Input (output from master)

MISO
Master Input, Slave Output (output from slave)

Advanced Projects 183

SS
Slave Select (active low, output from master)

You might see the connections labeled differently on some devices:

SCLK
SCK, CLK
MOSI
SIMO, SDO, DO, DOUT, SO, MTSR
MISO
SOMI, SDI, DI, DIN, SI, MRST
SS
nCS, CS, CSB, CSN, nSS, STE, SYNC
MOSI
MISO
SCLK
Pin0 Pin 1 Pin 2$
MOSI MISO SCLK MOSI Miso SCLK MOSI MISO SCLK
. Slave Slave
Trinket Device Device
5 58

T |

Figure 6-47. SPI bus connections to a Trinket

As there is no standard governing SPI, you may find that instead of con-
necting MOSI master to MOSI slave, the device is looking for SDO/DO/
DOUT master connecting to SDI/DI/DIN on the slave, which may seem
backward. This is a naming convention mismatch rather than an incorrect
diagram. If you find an SPI circuit that is not communicating, check the
wiring and datasheets: you may have to switch the two lines to get commu-
nications working.

The select pinis used in lieu of a slave address, as in 12C. The benefit is that
the communication is very fast and not limited to 8-bit words. Disadvan-
tages include use of more pins to implement SPI, that only one master
may be on the bus, and that it is limited to short distances. Because it is
not defined as a formal standard, you must refer to datasheets of specific
devices on timing and use.

Not all circuits require every connection. An SPI display may only require
data in and not return data out (or it may be optional). If you're dealing
with a single device connection, this kind of arrangement can save you a
pin you can use for other purposes.

184 Getting Started with Adafruit Trinket

SPlis implemented in a wide range of devices. Many of the Adafruit display
backpacks we used in [2C mode also work in an SPI mode.

If you believe you are having issues implementing an SPI interface, there
are several logic tools that can decode SPI bus signals. The popular Bus
Pirate device by DangerousPrototypes (Adafruit #237) is among these.

More discussion on use of SPI on the ATtiny85 is at http./bit.ly/
SPI_on_ATtiny85. The Arduino reference for SPI is more for larger Ardui-
nos. | also recommend Wikipedia for more information.

Using SPI on a Trinket is not difficult, but not common. Using four pins, it
does not leave many pins for other functions. The next project, the Trinket
Audio Player, will demonstrate using SPI on the Trinket.

Trinket Audio Player

Our final project is a very nice design, again by Phillip Burgess. The Trinket
might be thought of as a tiny subset of a “real” Arduino: less RAM, less
code space, fewer input/output capabilities. But the Trinket has a couple of
tricks up its sleeve: capabilities its larger brethren do not have. One of
these is a high-speed PWM mode. With just a few extra components, this
mode can be used for audio output—not simply piezo beeps and buzzes,
but actual sampled digital sound!

You could make an electronic greeting card with your own customized
message or song, add a background soundtrack to a model train diorama,
or create the world’s smartest whoopee cushion.

The circuit in Figure 6-48 will play audio from an SPI flash chip. It cannot
play MP3 files, but you can convert sounds in MP3 format that fit onto the
chip (up to about 65 seconds of playback).

Why this weird flash memory chip and not an SD card? Good question!
There are a couple of reasons:

» The flash chip is super affordable, so you can make it a permanent
part of a small project.

» The flash chip is in the form of an easy-to-use dual inline package
(DIP). If you used an SD card, you would need to buy a special break-
out board.

» Reading a FAT-formatted SD card with the Trinket’s tiny microcontrol-
ler is incredibly difficult; a single SD block fills the Trinket's entire
RAM. There are projects that do this, so it is not impossible, but it is
nonetheless challenging.

Advanced Projects 185

http://dangerousprototypes.com
http://bit.ly/SPI_on_ATtiny85
http://bit.ly/SPI_on_ATtiny85
http://arduino.cc/en/Reference/SPI
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Figure 6-48. The Trinket Audio Player

Parts List

There are two phases to this project. In the first, you will load sound data
onto a flash memory chip using a regular Arduino. In the second you'll use
a Trinket to play it back. Both stages have some parts in common:

« Winbond 25Q80BV serial flash memory (1 MB), Adafruit #1564—
according to the datasheet, this can store about one minute of music
or two minutes of voice, depending on quality

« Half (or full) breadboard, Adafruit #64, Maker Shed #MKKN2, or simi-
lar

- Breadboard jumper wires, Adafruit #153 or Maker Shed #MKSEEED3,
or any solid-core wire

For the loading stage:

+ Arduino Uno, Adafruit #50 or Maker Shed #MKSP99, or similar board
* 0.1 microfarad (uF) capacitor, Adafruit #753 or similar

« 3470-ohm resistors, RadioShack #271-1317 or similar

+ 31,000-ohm resistors, RadioShack #271-1321 or similar

186 Getting Started with Adafruit Trinket

http://www.adafruit.com/datasheets/W25Q80BV.pdf

» Optional: LED (any color, Adafruit #299 or similar) and 220-ohm
resistor (RadioShack #271-1313) for a status indicator

Not all of these parts are available from one vendor. You may be able to
swap some out for different parts you already have on hand or can acquire
locally; “Loading Sounds” on page 188 has some guidance on alternative
parts selection.

For the playback stage:

« Trinket 3V, Adafruit #1500 or Maker Shed #MKAD70
« Female headers, Adafruit #598
* Small "mint-tin" perma-proto board, Adafruit #1214

* 10,000-ohm (10K) potentiometer, Adafruit #562 (large) or #356
(small)

» Hookup wire, Adafruit #289, #288, #290, or similar (such as Maker
Shed #MKEE3)

» 8-pin DIP chip socket (RadioShack #276-1995 or similar)
+ 2 0.1 pF capacitors (Adafruit #753 or similar)

* 110 pF capacitor (RadioShack #272-1025 or similar)

» 168-ohm resistor (RadioShack #271-1106 or similar)

* 3xAAA battery holder, Adafruit #727 or Maker Shed #MKAD®61 (or
you can use USB power)

- 3 AAA batteries

» Headphone jack, Adafruit #1699, and headphones or portable ampli-
fied speakers, Adafruit #1363 or similar
or

Audio amplifier board, Adafruit #1552, and 4-ohm (or 8-ohm)
speaker, Adafruit #1314 or similar

Here, too, there is a lot of wiggle room for parts: not everything needs to be
a precise value. “Sound Playback” on page 193 has some guidance on
alternative parts selection.

Tools

» Soldering iron and solder
+ Diagonal cutters to trim component leads

» Wire strippers

Advanced Projects 187

 Very optional: Oscilloscope to see data waveforms on the pins

Software

You will need sound files in WAV format. You can search for downloadable
examples on the Internet (movie quotes, cartoon sounds, etc.). You can
also record or convert something from your music collection using soft-
ware such as Audacity (available as a free download).

This project uses both the Processing language and the Arduino IDE. They
look similar when running, which can lead to confusion. Make sure you are
loading the right code in the right IDE! Processing is for writing code to run
on your computer, while Arduino is for writing microcontroller code.

Download version 2.0 (or later) of Processing from http://processing.org—
the software in this section will not work with version 1.5, if you currently
have that installed.

The only library required for this project is the TinyFlash library. You can
download it from https:/github.com/adafruit/Adafruit_TinyFlash/. Down-
load and install it as you've done for other libraries, per Chapter 4. When
you've properly installed this library, you should have access to the code in
the Arduino IDE via the menu item File—Sketchbook—Libraries—Ada-
fruit_TinyFlash.

The examples folder included with the library contains all the code for this
project; there is nothing else to download.

Loading Sounds

Sound files for this project need to be in WAV format, uncompressed
(PCM), 8- or 16-bit resolution. Mono, stereo, or multi-channel are all
acceptable. The software used here will automatically convert to 8-bit
mono if needed.

If your audio is in a different format, you can convert it with a tool such
as Audacity or Adobe Audition, if you don't already have a conversion util-
ity on your computer. (Even iTunes can convert to WAV, if you tweak the
import settings—see Figure 6-49.)

188 Getting Started with Adafruit Trinket

http://audacity.sourceforge.net/
http://processing.org/
https://github.com/adafruit/Adafruit_TinyFlash/
http://audacity.sourceforge.net/
https://creative.adobe.com/products/audition

Import Settings

Import Using: | WAV Encoder &l

Setting: | Custom... ™

Details
22.050 kHz, B-bit, Mono.

|| Use error correction when reading Audio CDs

Use this option if you experience problems with the
audio quality from Audio CDs. This may reduce the
speed of importing.

Mote: These settings do not apply to songs
downloaded from the iTunes Store.

7 | Cancel | [OK]

Figure 6-49. Encoding audio for the music player

For voice recordings, 8 KHz is often a sufficient sample rate. For music, use
16 KHz or more. Generally, higher sampling rates will produce better-
sounding audio, but it requires more space. Also, the way the playback cir-
cuit works, there are diminishing returns above 25 KHz. You can experi-
ment with the settings.

The Winbond flash chip you're using has a capacity of 1,048,576 bytes (1
megabyte, often called “8 megabit”). You'll use 6 bytes to store data about
the length and sampling rate of the audio, leaving 1,048,570 bytes for the
audio data itself. Each byte is one audio sample.

To estimate the maximum duration of audio you can store on the chip:
Max. duration (in seconds) = 1,048,570 + sampling rate

So, with 16,000 Hz (16 KHz) music:
1,048,570 + 16,000 = ~65.5 seconds

If your source audio file is too big for the available space, the sound will be
truncated to fit when you load it on the chip.

Chip Loading Circuit

Because the Trinket does not support traditional serial 1/0, you'll use a reg-
ular Arduino board to transfer data to the Winbond memory chip. Later,
the memory chip will be moved to a playback circuit.

The Arduino Uno is suggested because it has easy access to the SPI pins
used to communicate with the flash chip. This can be done with a

Advanced Projects 189

Leonardo, Mega, or other board, but you will need to adapt the wiring to
use the six-pin ICSP header (MISO, MOSI, and SCK pins, specifically).

The serial flash chip is a 3.3-volt device, whereas the Arduino is 5 volts. To
avoid unleashing the Blue Smoke Monster (frying your chip), it is neces-
sary to power the chip from the Arduino’s 3.3V (not 5V) pin, and then use
level-shifting circuitry to drive the control lines. There are chips that do
this; use them if you have them. Alternatively, a simple approximation can
be made using resistors to create a voltage divider: connect each output
signal pin from the Arduino to a 470-ohm resistor, with the other end con-
nected both to an input pin on the flash chip and to a 1K resistor to ground
(see Figure 6-50 and Figure 6-51). If you do not have exactly these values
of resistors on hand, that is okay. You can substitute other values with
approximately a 1:2 ratio, such as 1K and 2.2K (or use two 1K resistors in
series for the latter). 1K/2.2K is about the upper limit on values; do not go
higher than this. It will not harm anything; it just will not work reliably. Also,
note that the data output line back into the Arduino (pin 12, blue wire) con-
nects directly; there are no resistors on this line.

.......
ooooo

ooooooo

Arduing”

Made with [Fritzing.org
Figure 6-50. Wiring diagram for the audio loading circuit

Add an LED and a 220-ohm resistor between Uno pin AO and GND to pro-
vide a simple status display. The LED will blink to indicate an error, and it
flickers during the data transfer. This is not essential and can be left out of
the circuit if you do not have the parts.

Finally, you'll put a 0.1 pF capacitor between the flash chip's V¢ supply
and GND. In a pinch you can get by without this, but it is good form to have
it there; it keeps the electrical gremlins away.

190 Getting Started with Adafruit Trinket

] s VIN
— Reser Arduino D0 f—
—] RESETZ Uno RX/D
— ARr (Rev3) 02 p— m it
4700 1k
— NI PWM D3 AN AMA
D4 fom Rz RS
47001 1k
AD PWM D5 o ANA AAA
e L PWM D6 f— A3 a5
47001 1k
—_— 7 D7 [AN AN
—p3 DF o
=] adrsDA P DD e
— AsrscL SSIPWM D10 o
MOSI/PWM D11 0.1uF
MISO/D12 —1}—
SCKID13
LEDM
—" 8 |—agp
Q\ 1CSP2 MISO 2 SPiFlash 7 i
1C5P2 SCK o — 2 6
L a 5
- 1CSP MOSI
2200
GND

Figure 6-51. Schematic for the audio loading circuit

Breadboarding works fine for occasional use. Knowing that a whole lot of
chips would be programmed while debugging this project, Phil wired all of
the components on an Arduino proto-shield (Figure 6-52), with a socket,
so he could easily swap out the flash chip.

Now launch the Arduino IDE and load the AudiolLoader sketch:
File—Sketchbook—Libraries—Adafruit_TinyFlash—AudioLoader.

Select the board type and serial port from the Tools menu, and upload this
code to the board. If you do not have the flash memory chip installed (or if
it is positioned incorrectly, or turned around), the status LED should blink.
If it is working properly, you will not see anything from the LED, but you can
check the serial monitor (at 57,600 baud). It should display:

HELLO
1048576

If not, something may be amiss with your wiring. Double-check all the con-
nections against the schematic.

Advanced Projects 191

Figure 6-52. The audio load circuit on an Arduino proto-shield

Transferring Audio

Close the Arduino serial monitor if you still have it open; the other code will
not work if it is there.

Launch Processing and load the AudioXfer sketch. It is inside the Ada-
fruit_TinyFlash folder that you downloaded earlier, in a subfolder called
Processing. (Sorry to make you hunt through the Arduino folder for this,
but it was less troublesome than requiring a separate download!)

Processing and the Arduino IDE look very similar. If you
encounter strange errors, make sure you are loading the right
code in the right environment.

When you run the AudioXfer sketch, all serial ports on the system are scan-
ned until an Arduino running the Audioloader sketch is identified. If you
already know the name of the port (previously selected from the
Tools—Serial Port menu in the Arduino IDE), there is a line you can uncom-
ment to open this port directly and bypass the whole lengthy port scan:

portname = "/dev/tty.usbmodemia1331"; // bypass scan

This is just an example port name you might see on a Mac or Linux. In Win-
dows, it might be something like “COM®6".

192 Getting Started with Adafruit Trinket

If the software detects an Arduino running the AudioLoader sketch, and if it
reports a flash memory chip is connected, you will be prompted to select a
WAV file to transfer. When you select a WAV file and click Open, the chip is
erased. There is no undo.

AudioXfer is a pretty bare-bones program; other than file selection, there is
no fancy user interface. It just prints text to the console. You will see a long
line of dots (and the LED will flicker) as data is transferred to the Arduino
and written to the chip. It can take several minutes to load a 1 MB chip to
capacity, so you may want to test with just a short sound at first.

If all goes well, the software reports done!. If an error was encountered, you
will instead see a message with some indication of the problem.

Once a sound is successfully loaded, disconnect the Arduino from the USB
cable, remove the flash memory chip from the breadboard or socket, and
then move it over to the playback circuit, which you'll build next.

Sound Playback

The ATtiny85 chip at the heart of the Trinket has the novel ability to pro-
duce a 250 KHz 8-bit PWM signal. That's four times what the Arduino Uno
can muster. You'll build a low-pass filter circuit to smooth that “square”
PWM into a usable audio waveform, shown in Figure 6-53.

Figure 6-53. Smoothing a PWM signal into an audio signal

You can make a basic low-pass filter from just a capacitor and resistor. You
need to know the filter's cutoff frequency—frequencies below this pass
through, while higher frequencies (like the PWM signal) are attenuated. A

Advanced Projects 193

rule of thumb with PWM audio is that the highest usable audio frequency
(the cutoff frequency) is about one-tenth the PWM rate. We've established
that this is 250 KHz, so a good cutoff would be 25 KHz.

There is a relationship between the capacitor and resistor values and the
resulting cutoff frequency. Given any two values, the third may be compu-
ted. Already having many 0.1 microfarad (abbreviated pfarad or uF) capaci-
tors around, Phil just needed to know the corresponding resistor value
required to achieve the desired 25 KHz cutoff (you could also do it the
other way: start with some resistor you have around, then determine a
suitable capacitor). Rather than getting bogged down with the math, you
can just whip out the Adafruit Circuit Playground app for iOS (select “Cir-
cuit Calculators,” then “RC Cutoff Filter"). You can also search in Google for
“low-pass filter calculator” resources on the Web and plug in the two
known values you have.

For a 25 KHz cutoff and 0.1 pfarad capacitor, the Circuit Playground app
suggests a 63-ohm resistor (Figure 6-54). That is not a standard value
you'll find anywhere, so select the next common size up from there: 68
ohms. If you have a 75-ohm resistor around, that is close enough; this is
not precision work.

The filtered output is then fed into a 10K potentiometer for volume adjust-
ment (you can leave this part out, but the volume will always be at the max-
imum) and then through a 10 pF capacitor that provides AC coupling, so
that the audio waveform is centered at OV rather than 1.65V (one-half the
Trinket's operating voltage, Vqc). The output is split to both the right and
left channels of a 1/8" phono jack, to which you can connect headphones
or an amplified speaker.

It is very important that you use a 3.3V Trinket (Trinket 3V) for this project,
which is shown in Figure 6-55 and Figure 6-56. The Trinket 3V's digital pin
voltage is directly compatible with the flash memory chip. Using a 5-volt
microcontroller would require level-shifting circuitry, adding to the cost
and complexity of the project.

The power source can be anything the Trinket can handle: a small 3.7V LiPo
cell, three or four AA or AAA alkaline cells, etc. You can also plug it into
USB, but there is a 10-second timeout while the bootloader runs its course
before the playback sketch runs.

You must disconnect Trinket pin #4 (audio output) before you upload code
to the board! If you solder the circuit permanently in a proto-board, it is
strongly recommended that the Trinket be socketed with two five-pin
pieces of female header. You could add a jumper between pin #4 and the
RC filter instead so you can disconnect it when you need to upload new
code to the chip, but | recommend socketing the Trinket with a female
header.

194 Getting Started with Adafruit Trinket

RC Filter

R

INPUT: MM I OUTPUT

c

|

Figure 6-54. Calculating the values for the RC filter

The audio connection interferes with USB. Disconnect pin #4
or unplug the Trinket from the breadboard before uploading
code, then reconnect it afterward.

Load the sound playback sketch in the Arduino IDE: File—Sketch-
book—Libraries—Adafruit_TinyFlash—TrinketPlayer.

Select Adafruit Trinket 8 MHz from the Tools—Board menu. Disconnect
Trinket pin #4 (or remove the Trinket from the circuit), press the reset but-
ton, then click the upload button in the IDE. After uploading, assuming all
else is wired properly, your audio should start playing immediately.

This code works only on the Trinket. It uses special registers and will not
compile on the Uno or other Arduino boards.

Advanced Projects 195

TRS1 BAT+ USEs s
>
GND 07 #0
et
@
#a £ i
c
#3 = #2
b=
— RST 3V

Y¥Yy

1
0.1uF

Figure 6-55. Schematic for the audio-playing circuit

Made with [Fritzing.org

Figure 6-56. The breadboard layout for the audio player

196 Getting Started with Adafruit Trinket

Use

As the code is currently written, the sound will loop forever. You could
change this to stop after the music plays, then use the reset button to
restart.

This project begs for a nice little package like a mint tin. You may select any
appropriate packaging, as the circuit is very compact.

Now we can ask the question: why couldn't the Trinket's EEPROM be used?
Compared to the Winbond chip, at 1 megabyte, the Trinket's EEPROM is
only 512 bytes—too small to hold even a tiny sound snippet.

EEPROM Memory

EEPROM is a handy, nonvolatile storage space that works well for storing
data such as values that are not practical to hard code into program mem-
ory (such as any data you want to read after powering off a project).

It is not practical to use EEPROM to offload RAM data, but it is mentioned
here for completeness. Using EEPROM requires that you include the
EEPROM library. The EEPROM library gives us two functions, EEPROM. read
and EEPROM.write:

#include <EEPROM.h>

int EEPROM-Address; // An unsigned value from 0 to 511
uint8_t value; // Byte value to read or write

value = EEPROM.read(EEPROM-Address); // Read a byte from the specified
// EEPROM address

EEPROM.write(EEPROM-Address, value); // Write a byte to the specified
// EEPROM address

Although reads are unlimited, there are a finite number of write cycles—
typically about 100,000—before a specific location may wear out.

An excellent example of using this library is in the Trinket Secret Knock
tutorial at http://bit.ly/knock-activated_drawer. The Arduino reference
page is at http://arduino.cc/en/Reference/EEPROM.

Conclusion

The projects presented in this book cover the majority of functions avail-
able on the Trinket and the ATtiny85 processor. There is a world of possible
uses for such a flexible part, though. | hope the input and output methods
presented in the text and these projects have helped demonstrate how to
extend the possible uses for the Trinket. Read on for some final ideas on
how to use this versatile microprocessor.

Advanced Projects 197

http://bit.ly/knock-activated_drawer
http://arduino.cc/en/Reference/EEPROM

7/Going Further with
Trinket

This chapter rounds out your knowledge of
the Trinket and its ATtiny85 microcontroller.

Microcontrollers: Smaller Versus
Larger

This book demonstrates the use of the Trinket in over a dozen projects, and
creative people find hundreds more uses for it every week. So should the
Trinket be recommend the Trinket for all projects? Absolutely not. The Trin-
ket is perfect where it will work effectively: in small-size, low-power
projects. For projects requiring additional speed, memory, or digital pins,
there are other microcontrollers to consider. Changing platforms often
comes at a cost, though: the Trinket is inexpensive compared to other con-
trollers with better hardware. For a hobbyist or manufacturer, cost is often
anissue.

So which other processors might you consider? The number of products is
so vast and ever-changing that there is no easy answer. To give you an idea
of some of the alternatives, Table 7-1 compares the Trinket to three other
small microcontroller boards.

This is quite a range of products. The Trinket is the smallest board,
although the Teensy is not a whole lot larger (the Uno is huge and expen-
sive in comparison). One issue with the Teensy is it does not use an Atmel
processor, although many of the functions and some libraries are compati-
ble or have been rewritten to function on the Teensy.

Table 7-1. Trinket versus other microcontrollers

Adafruit Arduino Uno | Teensy 3.1 Arduino
Trinket Micro
Pins (digital/ 5/3 shared 13/6 34/21 shared | 20/12
analog)
PWM pins 3 5 12 7
Voltage 3.3o0rb5V 5V 3.3V (5V- 5V
tolerant)

199

Memory 8 KB/512 32 KB/2 256 KB/64 32 KB/2.5
(Flash/RAM/ bytes/512 KB/1 KB KB/2 KB KB/1 KB
EEPROM) bytes
Size (mm) 31x155x%x5 7514 x 53,51 | 4318 x 1778 |48 x 18

X

15.08
Approximate $6.95 $29.95 $19.95 $22.95
cost

No one processor provides the functionality needed for all projects. Rather
than use a Trinket for everything, it is best if you weigh the project require-
ments against the capabilities of the parts available (and the budget) to
make an informed decision.

The Trinket Bootloader

Let's revisit the memory map discussed in Chapter 1. See Figure 7-1.

8,192 bytes Flash Memory RAM EEPROM

Free Program Memory 512 512
5,130 bytes bytes bytes

Figure 7-1. The Trinket memory map revisited

The ATtiny85 has 8,192 bytes of flash memory for programs, but not all of
this is available for user programs. This is due to special code written both
to communicate with a host computer via USB and to load programs from
the host into flash. As you might recall, this special code is the bootloader.
The bootloader is rather handy: you won't need a dedicated microcontrol-
ler programmer, such as those used by hardware engineers, to load pro-
grams.

However, the space used by the bootloader cannot be used by your pro-
grams. The bootloader might be needed to reload the user program due to
changes. There is no way to tell the Trinket, “I am positive my program is
debugged, let me use all the available space.” This is mainly because the
USB communication code takes up most of the reserved area—the boot-
loader is required to load the user's program.

It is possible to program your own (bare) ATtiny85, or bump Adafruit's
bootloader out using an external programmer. First, a bit more on the Ada-
fruit bootloader's design.

200 Getting Started with Adafruit Trinket

The Bootloader Design

One of the challenges Adafruit had with the Trinket design is that it wanted
to have a built-in bootloader that communicated via the USB serial bus.
The ATtiny85 does not have built-in USB hardware to do this like the FTDI
Friend or Arduino Uno. There are existing USB bootloaders that work on
the ATtiny85, but they use other companies’ USB vendor identification and
product identification numbers (VID and PID). Because it is not permitted
by the USB Implementers Forum to use others’ VID/PIDs, Adafruit adap-
ted one of the existing bootloaders, V-USB, in order to use their USB identi-
fication numbers.

V-USB is a bootloader for Atmel AVR processors produced by Objective
Development Software GmbH. It is a software-only implementation of a
low-speed USB device, making it possible to build USB hardware for AVR
microcontrollers without requiring additional chips. V-USB may be licensed
freely under the GNU General Public License, or alternatively under a non-
free license.

Adafruit did not wish to distribute custom versions of avrdude or the Ardu-
ino IDE, changed to work with a new USB device (no change comes fast to
the Arduino IDE). Instead, Adafruit created a USB bootloader that com-
bines the elegance of V-USB with the well-supported and tested nature of
USBtinyISP. USBtinyISP is an AVR chip programmer designed by Adafruit
several years ago. Adafruit purchased an official USB Forum VID/PID
before introducing the product (the identification codes are rather expen-
sive). As the USBtinyISP is an established product (several years old), sup-
port for it is already built into the Arduino IDE.

The Trinket bootloader looks just like a USBtinyISP to a host computer. The
Trinket uses the unique Adafruit VID/PID that was added to avrdude long
ago; it works with only minimal configuration changes.

This answers the question posed back in Chapter 2 about why the Trinket
uses a Windows driver for a device called a USBtinyISP. Adafruit's clever
programming saved them from the fate of other developers who must pro-
vide extensive customizations to Arduino programming code to support
their products. There are still changes required to add ATtiny/Trinket con-
figuration support to the Arduino IDE, but they are less extensive than they
might have been otherwise.

Bootloader Code

Other AVR processors (such as the one used by the Arduino Uno) have
extra hardware to protect the bootloader area in flash. However, the
ATtiny85 does not have a protected bootloader section in flash memory.
This means it is possible to accidentally overwrite or corrupt the Trinket
bootloader, preventing the loading of code. This may happen:

Going Further with Trinket 201

http://www.usb.org/about?

+ If you unplug the Trinket while uploading

« If you apply voltages to the pins beyond what they are allowed to be
connected to

* Random acts of magic (seriously, although | have never corrupted a
Trinket once throughout many projects!)

You can use an Arduino Uno to reprogram the bootloader on your Trinket
(or Gemma) if necessary.

Repairing the Trinket Bootloader

Reprogramming the ATtiny bootloader on a Trinket is possible. This may be
necessary if the bootloader is corrupted, or you may want to add custom
code.

/ If you modify the Adafruit bootloader, the Trinket may no
longer be eligible for customer support.

You can use an Arduino Uno to restore the bootloader binary code on a
Trinket (or a Gemma). This loader method has not been certified by Ada-
fruit to work with types of Arduino other than the Uno.

Make the following connections between a Trinket and the Uno:

+ Trinket VBAT pin to Arduino 5V (or just power it via a battery or USB

cable)

+ Trinket GND pin to Arduino GND

» Trinket RST pin to Arduino #10

« Trinket pin #0 to Arduino #11

 Trinket pin #1 to Arduino #12

« Trinket pin #2 to Arduino #13
On a Gemma, alligator clips clipped carefully on the pin pads work well.
The RST pin is underneath the Mini-USB jack. You may have to solder a
wire there temporarily. Alternatively, sometimes you can just hold the reset

button down while running the sketch (type G to start), and it might work.
Soldering a wire works best, though.

Next, download the bootloader repair software from http:/bit.ly/repair-
ing_bootloader. Uncompress the software and run the Trinketloader sketch
in the Arduino IDE.

202 Getting Started with Adafruit Trinket

http://bit.ly/repairing_bootloader
http://bit.ly/repairing_bootloader

Open up the Arduino IDE serial console (Tools—Serial Monitor) with a
communication setting of 9,600 baud. When the program tells you do so,
press the miniature reset button on the Trinket (or Gemma), or type the
letter G into the serial console and click the send button in the upper right
corner of the dialog window. You should see something similar to the
screen in Figure 7-2, listing the fuses, firmware burn, and verification sta-
tus. It takes about two seconds.

(15 comre) [Py =)
[send |

Trinket loader!

Type "G' or hiv BUITON for next chip
Starting Program Mode [OK]

Reading signature:3305
Searching for image...
Found "blankfull.hex® for atciny®5

Setting fuses Set Low Fuse to: Fl -> RO00 Set High Fuse to: DS -> ABOD Set Ext Fuse to: & -> A400
Verifying fuseas...

Low Fuse: OxFl 1s OxFl1

High Fuse: 0xD5 is 0xD5

Ext Fuse: Oxé is Oxé

Setting fuses
Verifing flash...

Flash verified corzectly!
Verifying fuses...

Fuses verified cozrectly!
“OK!* Wl

] Autoscrol Nolneendng » [S600Bad]

Figure 7-2. Reprogramming the Trinket bootloader

You can now test the Trinket with the simple Blink sketch from Chapter 3 to
ensure it is working.

Programming Bare ATtiny85 Chips
You can use several types of devices to program the ATtiny85 or other AVR

chips:

* An Arduino Uno
» The USBtinyISP AVR programmer, Adafruit #46

* An Arduino shield that is wired to program AVR chips, such as Ada-
fruit #462 (this one has a zero insertion force socket to make it pain-
less to insert and remove the programmed processor)

Going Further with Trinket 203

/ To program ATtiny85 chips, you need to ensure the connec-
tions are for the ATtiny85 and not the more common
ATmega328P used on the Uno. See the ATtiny85 pin diagram
in Chapter 1 for the right connections).

The method of using an Arduino Uno as an ATtiny85 programmer is docu-
mented in an excellent tutorial by High-Low Tech. An Instructable tutorial
that uses the High-Low technique is at http:/bit.ly/ATtiny_with_Arduino
with pictures. The Arduino IDE example program ArduinolSP is used to
perform the programming.

An oft-asked question is whether you can use the source code for the Trin-
ket bootloader for your own ATtiny85 project. It is open source: you can
make a clone but cannot distribute it due to Adafruit’'s ownership of the
device IDs (which Adafruit can't let you use due to USB Implementers
Forum licensing restrictions).

The code is posted on GitHub, including a precompiled hex file that is the
binary image for the bootloader. If you corrupt your Trinket or Gemma,
Adafruit states you are free to use the code to restore your product.

GemmaBoot, Adafruit's bootloader software, is free software: you can
redistribute it, modify it, or both under the terms of the GNU Lesser Gen-
eral Public License as published by the Free Software Foundation (version
3 of the License or later).

However, Adafruit is adamant that you cannot use its VID/PID USB identifi-
cation numbers for your own project. You must purchase your own identifi-
cation numbers at http://www.usb.org/developers/vendor/ if you use their
code.

And there is a dilemma—once you have your own VID/PID codes (signifi-
cantly denting your wallet), computers will not know that the device is the
same as a USBtinyISP. To be able to program their new devices, users have
recompiled avrdude, the low-level command-line program the Arduino IDE
uses, to recognize other VID/PID values. But now you're back to Adafruit’s
original conundrum of having to modify Arduino software to work with your
new chips.

If you are an advanced programmer, there might be something useful here.
If you are looking to start a Kickstarter campaign for a cheap Trinket clone,
perhaps another project might be better.

Other AVR Programming Methods

If you do not have an Arduino, you may have a Raspberry Pi. There is no
project to date that demonstrates how a Pi may program an ATtiny85.

204 Getting Started with Adafruit Trinket

http://bit.ly/ATtiny85_programmer
http://bit.ly/ATtiny_with_Arduino
https://github.com/adafruit/Adafruit-Trinket-Gemma-Bootloader
http://www.usb.org/developers/vendor/

However, a very similar project has been published on Instructables if you
wish to use it as a basis for an AVR programmer.

Also, one Adafruit user has used a Bus Pirate to reprogram a Trinket.

Atmel provides free software, Atmel Studio, to program its microcontrol-
lers. Studio or other software, such as the Eclipse environment, is often
used to program ATtiny85 chips. There is additional Atmel documentation
at http://www.atmel.com/devices/attiny85.aspx.

Code written for Atmel Studio looks more like a standard C program than
Arduino code. There will be a main function that all C programmers are
familiar with, which is hidden by the Arduino IDE. Libraries for various func-
tions are different, and libraries written for the Arduino IDE do not neces-
sarily work for Atmel Studio. With some skill, code may be rewritten
between the two. This erects a skill barrier that was eliminated when the
Arduino environment came about: the code complexity was reduced to
allow more freedom to focus on the project, and not worry about perfect
coding.

If you believe you would like to jump to this level, see Appendix C for more
information.

The Digistump Digispark
In researching ATtiny85 development boards, you may come across a
slightly older cousin to the Trinket in the form of the Digistump Digispark.
The Digispark was developed as a successful Kickstarter campaign. Both
have the same processor, have voltage regulation, and are programmed via
USB. Table 7-2 compares board features.

Table 7-2. Comparison of the Adafruit Trinket and Digistump Digispark

Adafruit Trinket Digistump Digispark
Pins (digital/analog) | 5/3 shared 6/4 shared
PWM pins 3 3
1/0 voltage 3.3o0rb5V 5V
Memory (flash/RAM/ | 8 KB/512 bytes/512 | 8 KB/512 bytes/512
EEPROM) bytes bytes
Program flash 5,130 bytes About 6,000 bytes
available
Regulated voltage 150 milliamp 500 milliamp
current
Size (mm) 31x155x%x5 26.82 x 19.02 x
458 (11.71 with F
header)

Going Further with Trinket 205

http://www.instructables.com/id/Programming-the-ATtiny85-from-Raspberry-Pi/
https://forums.adafruit.com/viewtopic.php?f=52&t=53031
http://www.atmel.com/devices/attiny85.aspx

Add-on boards Via wires or headers | Via wires, headers, or
custom “shields”

USB connection Female Mini-B Onboard male A
Approximate cost $6.95 $8.95

As you can see, they are very similar. One notable difference is that the Dig-
ispark uses the reset as an input/output (1/0) pin, while the Trinket expo-
ses it as the bootloader reset. Another is that the Digispark board must be
placed in a USB port or have a male A to female A extension cable, while
the Trinket uses the common male A to Mini-B cable. Also, the Trinket
comes in a 3.3-volt version as well as a 5-volt version.

The Trinket has its roots in the wearables market, whereas the Digispark
comes from the hobbyist effort to shrink the Arduino Uno. This has defined
the designs chosen by each manufacturer.

The Digispark has a number of add-on boards that Digistump calls shields,
although the design is very different from that of an Arduino shield. Digi-
spark shields may stack to obtain different functions, although this may
make it awkward to program the Digispark via USB. Digistump and its user
community have developed a number of libraries to provide functionality
similar to that in the Arduino IDE (and similar to what we saw for the Trin-
ket in Chapter 4). Some Digispark libraries may be compatible with Trinket,
or work with minor modifications.

Advanced users have placed the Digispark bootloader onto a Trinket. The
Trinket forum has this information in various discussion threads at http:/
bit.ly/Trinket_forum. The Digispark bootloader may provide a Trinket with
features not found in the Adafruit bootloader, but changing the bootloader
will void the Adafruit warranty.

For more information on the Digispark, see the Digistump wiki.

Community Resources

You cannot overestimate the value of having the Internet to provide resour-
ces to help you with your projects in general, and working with the
ATtiny85 and Trinket specifically. In “the old days,” all you had was paper
documentation from the company, specification (spec) sheets for chips,
and maybe a Popular Electronics article to help you. Today, companies are
building successful business models on an ecosphere of customer support
and tutorials using their products. Open source and user sharing provide
opportunities orders of magnitude beyond those available a few years ago.

Although | recommend that you keep a copy of this book on your bench
and another under your pillow, you will also be able to obtain a wealth of
information on the Internet, both technical and social. For a list of other
print books on Maker topics, see Appendix C.

206 Getting Started with Adafruit Trinket

http://bit.ly/Trinket_forum
http://bit.ly/Trinket_forum
http://digistump.com/wiki/digispark

Learning Arduino

This book assumes you have some familiarity with Arduino products,
C/C++ programming, and other skills. Most documentation on learning
Arduino assumes you're using an Arduino Uno or compatible board. Some
users might consider learning with an Uno before tackling the Trinket, but
this is not required. Here are some resources that may help with introduc-
tory topics:

Make: Getting Started with Arduino, Second Edition, by Massimo Banzi
An introduction to the Arduino platform, by its cocreator.

Learn Arduino, by Simon Monk and Limor “Ladyada” Fried
Adafruit’s Arduino guide. Start with Lesson O.

Getting Started with Arduino, by the Arduino Team
An introduction to Arduino by its creators. See also the Arduino
Playground.

Additional books and resources are listed in Appendix C.

Commercial Resources

Adafruit Industries, the maker of the Trinket, provides specifications, code
libraries, and a growing number of tutorials on creative ways to use a Trin-
ket. Here are some of the resources it provides to assist its customers:

The Adafruit main site
Many of the components used in the projects in this book are available
direct from Adafruit, including the Trinket itself (http:/bit.ly/
Adafruit_Trinkets).

Tutorials
The main tutorial and technical reference for the Trinket is located at
http://bit.ly/Trinket_intro. Also see both http://learn.adafruit.com and
http://learn.adafruit.com/category/trinket for Trinket-related tutorials.

Adafruit’s blog
All posts tagged with “Trinket” are at http:/www.adafruit.com/blog/
category/trinket/.

Adafruit’s Trinket forum
The forum contains a listing of all questions and answers related to the
Trinket to date, including any beta drivers. You can also mine the Ada-
fruit Wearables forum, as the Gemma shares the Trinket's code base.

Digistump is the maker of the Digispark board. It provides the following
resources:

Going Further with Trinket 207

http://www.makershed.com/Getting_Started_with_Arduino_2nd_Edition_p/9781449309879-p.htm
http://learn.adafruit.com/category/learn-arduino
http://arduino.cc/en/Guide/HomePage
http://playground.arduino.cc/
http://playground.arduino.cc/
http://www.adafruit.com
http://bit.ly/Adafruit_Trinkets
http://bit.ly/Adafruit_Trinkets
http://bit.ly/Trinket_intro
http://learn.adafruit.com/
http://learn.adafruit.com/category/trinket
http://www.adafruit.com/blog/
http://www.adafruit.com/blog/category/trinket/
http://www.adafruit.com/blog/category/trinket/
http://bit.ly/Trinket_forum
http://digistump.com/

Digispark libraries
These may not work out of the box on a Trinket, although they are
more likely to take into account the ATtiny85 architecture, so they may
provide a starting point if you need one.

Technical Resources

Adafruit’'s product pages and Trinket forum, listed in the previous section,
contain information developed after this book’s publication. Other resour-
ces that are available include the following:

Atmel Corporation website
Atmel makes the microcontroller in the Trinket (ATtiny85) and many,
many other AVR microcontrollers. A number of resources specific to
the ATtiny85 and other information on general AVR microprocessor
topics are available on the company’s website.

ATtiny85 data sheet
This is the ultimate reference on how to use this chip. Warning: it's 234
pages long!

A complete listing of ATtiny85 resources can be found at
http://www.atmel.com/devices/attiny85.aspx.

Third-Party Sites

» Frank Zhao is the programmer of the Trinket bootloader. He has
released several tutorials for Trinket on his site, http:/eleccelera-
tor.com

+ If you need a 3D rendering of the Trinket, see the model by Gavin G.
Stewart at http://bit.ly/3D_Trinket.

» Nick Gammon's website offers a wealth of information about the
ATtiny85 and other AVR microcontrollers, with well-written code
examples. Nick is also the author of the SendOnlySoftwareSerial
library.

* A good step-by-step guide on uploading code to the Trinket and
Gemma is available at http://bit.ly/Gemma_code_upload.

208 Getting Started with Adafruit Trinket

https://github.com/digistump/DigisparkArduinoIntegration/tree/master/libraries
http://www.atmel.com/
http://www.atmel.com/Images/Atmel-2586-AVR-8-bit-Microcontroller-ATtiny25-ATtiny45-ATtiny85_Datasheet.pdf
http://eleccelerator.com/
http://eleccelerator.com/
http://bit.ly/3D_Trinket
http://www.gammon.com.au/scripts/forum.php?bbtopic_id=123
http://forum.arduino.cc/index.php?topic=112013.0
http://forum.arduino.cc/index.php?topic=112013.0
http://bit.ly/Gemma_code_upload
http://www.atmel.com/devices/attiny85.aspx

Social Media Resources

Adafruit on Google+
Adafruit posts news and information on their Google+ page. They have

millions of followers!

Adafruit's “Show and Tell” program
This is broadcast live Wednesdays at 7:30 p.m. US Eastern time on the
Adafruit Google+ page. Many Trinket projects debut on Show and Tell.

The author’s Google+ and blog pages
For Trinket and other information, see https://plus.google.com/+Mike-
Barela; http://21stdigitalhome.blogspot.com also contains Trinket-

related and other information.

You can search Google+ for the keyword #trinket to find Trin-
ket projects and other unrelated items people tag with the
term.

Going Further with Trinket 209

https://plus.google.com/+adafruit
https://plus.google.com/+MikeBarela/
https://plus.google.com/+MikeBarela/
http://21stdigitalhome.blogspot.com/

8/Troubleshooting

Running into problems and solving them is a
defining part of the Maker experience. This
chapter will help you resolve many common
Issues you may face when working with the
Trinket.

Most issues fall into the following categories:

« Cable issues

» Connectivity issues

» Arduino IDE issues

« Common library problems
» Error messages

» Usage issues

» Manufacturer support

Your USB Cable

Half of Trinket issues are ultimately traced to a bad USB cable
Or a power issue.

Very often, to get an older USB Mini-B cable, you'll scrounge in your box of
old cables to find something that works. This may not get you the reliable
cable you expected. Problems you may encounter include:

* Many USB Mini-B cables only have power wires and no signal wires
(they were designed for charging devices only).

» The cable connections are broken or intermittent, due to flexing
(often at one end).

211

» The wire gauge of the cable is insufficient (especially common with
smaller or more inexpensive cables).

» A connector is cracked, dirty, or broken.

You may think, “This cable works for my phone, it should be good.” How-
ever, the phone may not use the data wires per standard USB specifica-
tions, or it may only have power wires. That the cable works for your phone
is not a sufficient indication that the cable will work for your Trinket
projects.

Troubleshooting:

1. Check your connections and USB port to make sure that everything
connects well.

2. If there is a problem, try swapping the cable for a thicker, more sub-
stantial one, or consider purchasing a new one.

3. As a final check, disconnect the USB cable and connect the Trinket to
external power. Connect 3.7 to 9 volts, with the positive to the BAT+
pin and negative to the GND pin. If the green LED glows and you have a
dim red LED for 1-2 seconds, your Trinket is working, so you are having
problems with USB power. Do not expect the red LED to flash brightly
for 10 seconds (bootloader mode) only on battery power: the boot-
loader will only act that way if the USB data lines appear like a USB
port in addition to the cable supplying good power.

Buying a good, substantial cable (Adafruit #260 or similar) from a local
shop or reputable online supplier will remedy many issues.

Connectivity Issues

The Trinket works best with specific hardware. Known problems with con-
nectivity include:

1. Intermittent Trinket communications on USB 3 ports on computers
(USB 3 connectors have blue plastic inside them)

2. Incompatibility issues on USB ports on some versions of the Linux
operating system

3. Differences in how the Trinket communicates when compared to other
Arduino-compatible devices such as the Uno

4. The lack of a serial monitor function on the Trinket
Connectivity problems are associated with specific error messages or

problems. The following issues illustrate frequently encountered
situations:

212 Getting Started with Adafruit Trinket

General communications: Is your USB cable connected to a USB 3 port?
Reconnect your Trinket to a USB 2 port. The timing in the V-USB boot-
loader may have issues with some USB 3 chipsets. If you do not have a
USB 2 port and you have issues, obtain an inexpensive USB 2
expander/hub. A powered hub is best, as shown in Figure 3-4. Plug a
USB cable from the hub into the Trinket.

I connect my Trinket via a USB cable on Windows and hear the operating

system connect, and then 10 seconds later, | hear the disconnect sound. Did

it fail?
This is the Trinket's normal operation. Unlike Arduinos, the Trinket only
makes a USB connection while it is in bootloader mode. The boot-
loader runs when initially plugged in and when the reset button (or pin)
is activated, and the bootloader is active for 10 seconds. The red LED
should flash during the bootloader active period, although some prob-
lems might cause the light to be dimmer than it should be (more on
that later).

| get the green power LED and a normal red flashing LED on reset, but the

Trinket appears to not communicate in any way; my program is not loaded.
Be sure you click the upload button on the Arduino IDE (the circle with
the right arrow in it) after you press the reset button on the Trinket.

| plug my Trinket into the USB cable and | have a dim red light for a short
time, but no pulsing.
This is due to poor USB cable data line connectivity. Use a known,
good cable. Also ensure there are no connections to Trinket pin #3 or
#4 during programming.

I connect the Trinket via USB and | see the green LED come on. But the red
LED will not come on at all when plugged in or when the reset button is
activated.

1. If you can, remove the Trinket from the circuit to program it. Some
connections may interfere with programming—especially any con-
nections on pins #3 and #4, as these are shared with the USB
connection.

2. A remote possibility—if you have recently programmed the Trinket
or have rewired your circuit, the bootloader may have been cor-
rupted. See “Repairing the Trinket Bootloader” on page 202 for
how to correct this.

3. The Trinket could be defective. Go through this entire chapter to
review how the Trinket is used. If you still have issues after trouble-
shooting, see the last section on Adafruit customer support.

| get many errors when | try to upload a program in the Arduino IDE.
Make sure you've selected the correct Trinket in the Tools—Board
menu item and have selected the programmer USBtinylSP in

Troubleshooting 213

Tools—Programmer. Other settings do not work. If you switch back to
another Arduino-compatible board, change the settings appropriately.
To reprogram the Trinket, reselect the correct board and programmer.
For undefined variable error messages, it may be a library problem, as
discussed in Chapter 4.

I cannot find the Trinket in the list of devices in the operating system.
Depending on your operating system, you may or may not “see” it in
the device listings. You will never see the Trinket as a serial device,
because the USB is not actively connected the entire time. For Win-
dows, you should see the driver in the Windows Control Panel, under
Device Manager and “libusb-win32 devices” (as “Trinket” or “USB-
tiny™). If it is not there, ensure the Trinket is connected to the com-
puter via a USB cable and the reset button is pressed and released. If it
is there, the USBtinyISP driver has been installed correctly. It will not
have a “COM" (serial) port attached (under “Properties”); this is nor-
mal. If a question mark is on the icon, you may need to reinstall the
driver. See Chapter 2 for more information. For Macs, see Figure 8-1.

There are driver issues while using VMware or other virtual machine

programs.
The VMware Workstation Server service is known to interfere with the
USBtiny driver used by the Trinket on Windows. Stop the VMware ser-
vice, if possible, to use Trinket, and then restart the service for normal
VMware operation. Type “Services” in the Windows Control Panel
search box to show the Services Manager and running services. This is
rather complex, as stopping the wrong service can cause unpredicta-
ble results, so it's best done by the expert who installed VMware in the
first place.

| cannot see the Trinket using the serial port or serial monitor in the Arduino

IDE.
This is normal. Trinket on Windows communicates through the USBti-
nylSP driver and not as a COM or serial port. With other operating sys-
tems, the serial connection may be active only during bootloading. The
serial monitor is not available, as the Trinket does not have a USB com-
munication chip. See Chapter 3 on connectivity; this is similar to the
serial monitor using an FTDI Friend and the SoftwareSerial library.

My Trinket worked when | first got it, but it is acting up now. What could be

the problem?
First, check your power connections; if they are not good, correct
them. Next, your circuit could be electrically problematic or miswired.
If your Trinket is removable, remove it and try to load the Blink sketch
for Trinket from Chapter 3 to test it out. If it works outside your project,
check your project connections. If you connected to Trinket pins #3,
#4, or both, these need to be disconnected when programming the
Trinket, then they can be reconnected after programming.

214 Getting Started with Adafruit Trinket

I power my Trinket via a USB cable and it does nothing—no lights, nothing!
Does your circuit have the power connected, and to the correct pins?
Check your USB cable. Not all USB cables have all four wires (two for
power, two for data) required by the Trinket and most other USB devi-
ces. If your circuit requires more power than the power supply or USB
connection can supply, you may have severe issues. NeoPixels espe-
cially require lots of power (see Chapter 5 for calculating NeoPixel
power requirements), so do not power more than a handful from the
5V pin. You can power NeoPixels from a separate supply than the Trin-
ket if necessary, if the ground lines are also connected.

l use Linux and have problems.
See Chapter 2 about Trinket and Linux.

Can | charge a rechargeable battery (LiPo) connected to BAT via USB or

another mechanism?
You can use a LiPo battery for a Trinket (a 3.7-volt LiPo is great for the
Trinket 3V), but the Trinket cannot charge the LiPo directly. You can
add a LiPo charging board such as Adafruit #259 or #280; then it will
run on the battery, and you can charge via the LiPo charging board
USB port when needed. Use a board like Adafruit #1304 for out-of-
circuit battery charging.

Arduino IDE Issues

At this point you have gone through the connectivity issues, and everything
seems to be working electrically. You appear to be having errors in the
Arduino IDE, either during the compile/verify stage or during upload.

Mac

If I try to open the Mac version of the Arduino IDE from Adafruit.com, the

operating system says the file is “"damaged, corrupt, and needs to be

trashed.”
The preconfigured download on the Adafruit site was not done by a
“signed developer” and so is trapped by OS X security. If you are using
OS X Mavericks or later, you need to update the security setting to
permit running the Arduino IDE. Go to Security & Privacy in System
Preferences, click the lock icon, and log in. Change “Allow apps down-
loaded from” to “Anywhere!” Set it back once the preconfigured IDE
launches.

| cannot see the Trinket in the Mac USB Device Tree (or as a device in /dev).
The Trinket does not emulate a serial port to communicate like some
Arduino compatibles. You should be able to see it in a System Report,
as shown in Figure 8-1.

Troubleshooting 215

Mac

¥ Hardware USE Device Tree
ATA ¥ USB Hi-5peed Bus
Audio ¥ Hub
Bluetcoth Trinket
Camera W EBRCM2046 Hub
Card Reader Bluetocoth USB Host Controller
Diagnostics ¥ Hub
Disc Burning JTACICES
Ethernet Cards Internal Memory Card Reader
Fibre Channel ¥ USB Hi-Speed Bus
FireWire ¥ Hub
Craphics/Displays External HDD
Hardware RAID ¥ Hub
Memory ¥ Hub
PCI Cards Apple Cinema HD Display
Parallel SCSI IR Receiver
Power Built-in iSight

Figure 8-1. A Mac OSX System Report screen showing a connected Trinket

| get the following error message when trying to upload from my Mac: “avr-
dude:error:usbtiny_transmit: usb_control_msg(DeviceRequestTO):
unknown error avrdude: initialization failed, rc=-1 Double check connections
and try again, or use -F to override this check.”
This is seen with a Mac using a wireless mouse with a USB transceiver.
Unplug the mouse transceiver USB connection and use another
mouse (a trackpad or wired mouse) to program the Trinket. This error
may also indicate a conflict between the Arduino IDE you are using and
another version of the IDE on the same machine. Ensure all versions of
avrdude are updated to the latest version on your machine.

| have the error “no connection to an I0Service (expected 4, got -6)...”
See “Upload Errors” on page 221 to change the chip erase delay. This
happens more often on older computers. Also consider changing the
USB port, again with USB 2 preferable over USB 3.

| have VMware on my Mac and have USB issues.
You should consider stopping the VMware services. See the Adafruit
Trinket forums for other solutions if you have to use VMware and have
problems.

| get a “parallel port not available” message on my Mac.
If an original avrdude.conf file is found without Trinket changes, it often
has references to parallel port programmers for avrdude that OS X
does not like. Remove all references to parallel port programmers, or
download the confirmed Mac avrdude.conf from Step 2 of Adafruit's
instructions on setting up the Arduino IDE.

216 Getting Started with Adafruit Trinket

http://bit.ly/Arduino_IDE
http://bit.ly/Arduino_IDE

Common Library Problems

There are many problems you can have with libraries; Figure 8-2 shows
one example.

hirring the hard 3
ry to match the aer

A4 want these to be as smwall/large as possible w
#/ for maw range. You'll have to tweak them as n
£/ have!

I| #define SERVONIN 150 // thiz iz the 'minimun' pulse length count {out of
#define JERVOHAX 600 // this is the 'maximum' pulse length count [out of

| // our serwo # counter
4

Figure 8-2. A sample of a library-related error message

The most common library-related error messages take the form “XXXX
does not name a type” or “YYYY not declared in this scope.” They mean
that the compiler could not find the library. This can be due to any of the
following causes:

The library is not installed
See the steps in Chapter 4 to install a library correctly.

Wrong folder location
The IDE will find standard libraries and libraries installed only in the
sketchbook Libraries folder. It will not be able to find libraries installed
elsewhere.

The specific library folder must be at the top level of the Libraries
folder. If you put it in a subfolder, the IDE will not find it.

You do not have a “Sketchbook” folder
It is there, but on a Windows or Mac OS X machine it is named Ardu-
ino (on Linux it is named Sketchbook). See “Where to Install Libraries”
on page 42 for further details.

Incomplete library
You must download and install the entire library. Do not omit or alter
the names of any files inside the library folder.

Wrong folder name
The IDE will not load files with certain characters in the name. Unfortu-
nately, it does not like the dashes in the ZIP file names generated by

Troubleshooting 217

GitHub. When you unzip the file, rename the folder so that it does not
contain any illegal characters. Simply replacing each dash (-) with an
underscore () usually works. If the folder has the word “master” on
the end (usually preceded by a dash), remove that also. The best
method to see what the library name should be is to look at the sample
code to see what the sample expects the library name to look like.

Wrong library name
The name specified in the #include line of your sketch must match
exactly (including capitalization!) the class name in the library. If it
does not match exactly, the IDE will not be able to find it. The example
sketches included with the library will have the correct spelling. Just
cut and paste from there to avoid typographical errors.

Multiple versions
If you have multiple versions of a library, the IDE will try to load all of
them. This will result in compiler errors. It is not enough to simply
rename the library folder; it must be moved outside of the sketchbook
Libraries folder so the IDE will not try to load it.

Library dependencies
Some libraries are dependent on other libraries. For example, most of
the Adafruit graphic display libraries are dependent on the Adafruit-
GFX library. You must have the GFX library installed to use the depen-
dent libraries. This is also true for libraries that use |2C that also expect
the Wire library, which for the Trinket is TinyWireM.

“Core” libraries
Some libraries cannot be used directly. The Adafruit-GFX library is a
good example of this. It provides core graphics functionality for many
Adafruit displays, but cannot be used without a specific driver library
for the display you are using.

Forgetting to restart the IDE
The IDE searches for libraries at startup. You must shut down all run-
ning copies of the IDE and restart before it will recognize a newly
installed library.

Here are some other library questions you might have:

| found a wonderful Arduino library that does what | need, but when | try to

use it on my Trinket, | get errors. What can | do?
First, check Chapter 4 to see if the library or functionality you want to
use is already listed. If not, your library find was probably coded for
other microcontrollers. Those libraries might use large memory
spaces or additional hardware in other microcontrollers, which may
not work on the Trinket. If you understand how the library code works,
you may be able to fix some errors yourself. Performing a Google

218 Getting Started with Adafruit Trinket

search for the library name and “ATtiny85" may produce pages where
others found the same circumstance and recoded the library.

Does a library | found on the Internet work with Trinket?
As there are hundreds of libraries out there written by all sorts of
people, and the Arduino Uno is the common platform, there's a good
likelihood it won't work. But it doesn’t hurt to try—see the previous
question to proceed.

| have problems using the Servo library with the infrared sensor code. Help!

The IR code uses a loop to check for infrared sensor pulses to decode
them. The Servo library refreshes the servo position via interrupt code
every few milliseconds, so yes, the servo refresh may interfere with the
decoding. Temporarily disabling interrupts while counting pulses
might work, with careful coding to not make the servos mad. Larger
Arduinos typically juggle this with their beefier timers and larger IR
libraries.

Error Messages

Error messages may fall into the general categories listed next.

Compilation Issues

| get a message to the effect, “A device attached to the system is not func-

tioning. (expected 4, got -5).”
If you get only this message, your program may have loaded success-
fully. Adafruit states it is only a warning from the Trinket when asking
for data. This may happen depending on the reset button timing or
when loading a large program. See if your program is running, and if
not, try to load it again. If you get this message with others, focus on
the others. Also be sure you have updated your Arduino IDE to include
the new Id.exe, chip_erase_delay, and latest avrdude version (these
should all be included in the latest Adafruit preconfigured IDE; see
Chapter 2). Finally, you might have the Trinket on a USB 3 port—try to
use a USB 2 port or powered USB 2 hub.

My program will only compile a sketch up to about 4,400 bytes, not the
5,310 or so discussed in the book.
This indicates that the Id.exe program from the standard Arduino IDE
is still being used. See Chapter 2 for details on changing the linker to a
new version that will support the full amount of program memory
available on the Trinket.

| get a message like “avrdude: stk500_getsync(): not in sync: resp=0x00."
There are two possibilities here. First, ensure the Arduino IDE is set to
Adafruit Trinket 8 MHz, Adafruit Trinket 16 MHz, or Gemma 8 MHz, as
appropriate, and not Arduino Uno or something else. Second, be sure

Troubleshooting 219

you press the Trinket reset button and the red LED is flashing when you
upload your code (you have a short 10-second window to do so). This
error generally indicates a serial read error. Unplug and replug the Trin-
ket as a last resort.

| get an error like “'+TCCR2A+" was not declared in this scope.” (or TCCR3A,

TIMSK3, OCR3A, OCR2A, TCCRZ2B, etc.).
This is a sign that you are trying to use code that uses Timer 2 or
Timer 3, available on large AVR microcontrollers but not the Trinket.
Trinket has Timers O and 1 available, and their use is different than on
the Uno. Look at the code or library to see if the timer code can be
changed to Timer O or Timer 1. Any code requiring 16-bit timers only
will not be compatible, as there are only 8-bit timers on Trinket. You
can use the ATtiny85 datasheet or online resources to see about
changing the timer code, but you might want to look for a different
library designed to work with the ATtiny85.

| get the message “In function ‘void loop()': sketch_may10a:19: error: ‘A1’

was not declared in this scope.”
The analog pins Al, A2, and A3 should be referred to using the num-
bers 1, 2, or 3, respectively. The difference in the pin designating
change is due to a bug in the Arduino IDE for Trinket and Gemma. An
example: analogRead(1); reads pin Al, which is the same physical pin
as digital 2. There is no confusion with the digital pins, but remember
the analog and digital pin numbering are different, as shown in
Figure 1-4. Also, calls to analoghirite use digital pin numbers, as ana-
logWrite actually outputs a Pulse Width Modulation signal on certain
digital pins (0, 1, and 4 with code).

| get an error like “/Applications/Adafruit Arduino.app/Contents/Resour-
ces/Java/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../ ../ .. avr/lib/
avr25/crttn85.0:(.init9+0x2): relocation truncated to fit: R_AVR_13_PCREL
against symbol “exit' defined in .fini9 section in /Applications/Adafruit
Arduino.app/Contents/Resources/Java/hardware/tools/avr/
bin/../lib/gccravr/4.3.2/avr25/libgec.a(_exit.o).” The Internet gives instruc-
tions about linkers, etc., but it is not helpful.
If you get any error messages about PCREL or symbols, the linker has
detected a program that compiles to more than 5,310 bytes. Your code
is too big for Trinket. See Chapter 4 for some tips on memory
optimization.

Can | write code that will compile one way for Uno, and another for Trinket?
Maybe, if the Arduino IDE internal preprocessor allows it. The defined
symbols for the processor are (note each __is two underscores):

+ _AVR ATtiny85 : ATtiny85 processor (Trinket, Gemma, Digi-
spark)

* _ AVR_ATmega328P__: Uno R3 and compatibles

220 Getting Started with Adafruit Trinket

+ _ AVR ATmega32U4 :Lleonardo, Flora, Micro, Esplora
+ _ AVR_ATmega2560__: Mega 2560

Note that __AVR_ATtinyX5__ does not work; you need to replace
the X with an 8.

You might think the following code could work:

#ifdef _AVR ATtiny85

#include <TinyWireM.h> // For Trinket

#else

t#tinclude <Wire.h> // For larger microprocessors
#endif

But most often the Arduino IDE will try to include both libraries, in an effort
to be helpful—not the desired thing at all! This is why Adafruit often makes
separate libraries for the Trinket/Gemma code. #ifdef usually works the
same as #if defined(), but not always; this is well known and another IDE
idiosyncrasy that is still not fixed.

If you wish to write code with complex preprocessor directives, you should
check the Arduino forums for the latest information, as this is an evolving
issue in updated Arduino IDE versions.

Upload Errors

Some users have reported intermittent IDE errors during upload even with
the correct software. For some computers—perhaps slower machines—
one change will make a difference.

Find the directory where the Arduino IDE you installed is located via Win-
dows Explorer or Finder in Mac, and go to that directory. You will see a
number of subdirectories that make up the IDE software. Go to the hard-
ware/tools/avr/etc directory. You will need to open the file avrdude.conf
with a text editor (Notepad or WordPad for Windows; TextEdit or your
favorite editor for Mac). Scroll down a long way to find the line under the
ATtiny85 heading (do not make changes under any other headings). Make
changes to the one line noted here:

chip_erase_delay = 900000;
Change this line to:
chip erase_delay = 400000;

Save the file and get back to your desktop. If you have the Arduino IDE
open, close and restart it to make sure the change takes effect. If you con-
figured your own IDE download, also ensure you have the latest avrdude
files. If you have multiple versions of the Arduino IDE, avrdude, or both on
your computer, it is easy to edit the wrong configuration file, so be sure you
check if you are still getting errors and you believe you edited the right file.

Troubleshooting 221

http://forum.arduino.cc/

An additional message you may encounter when compiling a program for a
Trinket:

| uploaded the Blink sketch to my new Trinket after pressing the reset but-

ton. | got an “expected 4, got -5" error, and now the bootloader LED contin-

ues to blink. Is it stuck or broken?
Your Trinket is working fine and running your sketch. As the Blink
sketch blinks the same pin #1 red LED that the bootloader flashes for
10 seconds, you can easily be tricked into thinking the bootloader is
still running when your Blink sketch is running. This is why in Chap-
ter 3, itis recommend that you change the delay function times so the
LED will blink faster during your sketch compared to the bootloader.
You can ignore “4, -5" errors if it appears your code is running fine. If
the code appears not to run, look for other problems.

The Serial Monitor

If you use code for other Arduino processors, it may include code that
assumes a serial monitor is built into the board (such as that built into the
Arduino Uno and other boards). The Trinket does not have a dedicated
USB chip, so it cannot perform the same way. See Chapter 5 for a discus-
sion of serial communication. There is a method of using SoftwareSerial to
act as a serial monitor but you will need an external FTDI Friend or similar
board to provide a serial interface.

Usage Issues

The following issues may be encountered while using the Trinket. Often
they are not errors, but rather differences in how the Trinket behaves ver-
sus other microntrollers:

I cannot get analogRead to give changing values, it's like it's broken. Or | get

different values for every call—what gives?
Recall from Chapter 1, analog 1 is Trinket pin #2, analog 2 is Trinket pin
#4, and analog 3 is Trinket pin #3. And unlike when programming Uno,
with Trinket you cannot use Al to refer to analog 1, etc., as those map-
pings were not included in the definitions for the ATtiny85. How-
ever, the numbers work fine—just use the number 1 for Al, 2 for A2, or
3 for A3. If a value is not “right,” ensure you have the right analog pin
number for the physical pin you are connecting to. See Chapter 1 for
pin mappings.

I am using analogRead on Trinket pin #3 (analog 3), and it does not give the
same type of readings as performing reads on Trinket Pin #2 (analog 1).
If you look at the Trinket pin connection diagram in Chapter 1, you'll
see that there are components on pins #3 and #4 to support USB
communication. Pin #2 has no extra components. You may add addi-
tional components on pins #3 and #4 to compensate for this, or factor

222 Getting Started with Adafruit Trinket

the effects of the values returned from analogRead into your code as
was done in the Trinket Alarm System program in Chapter 6.

When I apply power to my project, the Trinket executes the bootloader for
the first 10 seconds before executing my code. Can | skip this 10-second
pause?
In general, no; this is not easily changed due to how the Trinket was
designed. An advanced user could use an AVR programmer to either
upload a program without the bootloader or change the code reset
vector.

I would like to use a Trinket 5V. What type of power options should | con-

sider?
A Trinket 5V generally likes 5.2 to 16 volts on the BAT terminal, but it
still works down to about 3.3 volts as long as you do not expect voltage
from the 5V regulated voltage pin. Please do not put two LiPo batteries
in series or parallel to get more voltage or current: it could cause a fire
due to melting batteries. Remember the Trinket 5V will still work relia-
bly at 8 MHz on 3.7 volts (and there is an optional JST connector that
allows this to happen more easily). If you really need a higher-voltage
LiPo, the 7.4-volt units used in model vehicles may be good, although
you will need the appropriate charger also. Alkaline or rechargeable AA
or AAA batteries are fine; it's best to use three of those batteries for
Trinket 3V (4.5 volts) or four for Trinket 5V (6 volts).

The documentation says Pulse Width Modulation (PWM) is available on
Trinket pins #0, #1, and #4, but the analogWrite function only works when
told to use pin #0 and pin #1. How do | get pin #4 to do PWM?
True, analoghirite does not recognize pin #4 in some older versions of
the Adafruit-supplied Arduino IDE. However, there is code to use Timer
1to do PWM on pin #4. See the Analog Meter Clock code in Chapter 5
for the two functions you can use.

I have output signals on pins and | can see them with an oscilloscope, but
LEDs on the same pins will not light.
If you do not set a pin for digital output (via the pinMode function), the
drive current will not be enough to power external circuitry even
though you can see it with a high-impedance oscilloscope.

Windows complains about loading the drivers because they are unsigned.
See “The USBtinyISP Driver for Windows" on page 11 on installing driv-
ers for Windows.

I would like to try using Linux. What are the pitfalls | need to look out for?
Your programmer may need access to the USB port, but this is con-
trolled by root. See Chapter 2 for details. Also, the USB code in the
Linux kernel may not like the Trinket timings, but there's not much you
can do about that. Go ahead and experiment.

Troubleshooting 223

I would like to use the Trinket for a specific function; will this work?
Possibly. You will have to review the resources required (hardware:
memory, pins, etc.; software: code and libraries) to accomplish what
you want and make a decision. If you need a small board that offers
more resources, see Chapter 7.

Will Trinket interface to the hardware | have?
The answer is similar to that for the previous question: possibly. If it
takes more than five pins, probably not. You will need to do some
research on the requirements for your item, or do some experiment-
ing. Some folks have done some remarkable projects that others
might have thought a stretch for Trinket. Everyone likes a surprise.

| have connected well over a hundred NeoPixels to my Trinket, per Chap-

ter 5. 1 can only light about 110 or so. Is there a bug in the NeoPixel library?
No bug. The Trinket only has 512 bytes of variable memory (static
RAM), and each NeoPixel takes 3 bytes of memory. Between this and
the memory required to run a program, there is no additional memory
for more pixels. If your project requires more than about 110 NeoPixels,
you should consider another microcontroller (see Chapter 7 for some
alternatives).

Are the Trinket EagleCAD circuit board (PCB) layout files available?
Yes; see https://github.com/adafruit/Adafruit-Trinket-PCB.

Manufacturer Support

Adafruit Industries makes customer service and satisfaction a cornerstone
of its business. If you still have problems after troubleshooting, you can go
to the Adafruit forum to describe your situation. The helpful forum moder-
ators will be able to assist with additional troubleshooting.

There are also many tutorials on using Trinket and more at https:/
learn.adafruit.com/category/trinket.

After posting to the Adafruit forum, if it is evident your Trinket is defective,
at their discretion, Adafruit may replace it.

224 Getting Started with Adafruit Trinket

https://github.com/adafruit/Adafruit-Trinket-PCB
http://forums.adafruit.com/viewforum.php?f=52
https://learn.adafruit.com/category/trinket
https://learn.adafruit.com/category/trinket

A/Making Electronic
sounds

Sound is a very personal part of any project. Everyone has his particular
vision of how something should sound. The Trinket Animal project in Chap-
ter 6 used customizable sounds. This type of sound generation can be
added to many Trinket projects.

The Arduino tone function does not work with the Arduino IDE used to pro-
gram Trinket. This is not a hindrance, though, as tone generation can be
done simply with a tiny bit of code.

To experiment with sounds, you can use a sound creation program on Trin-
ket or other Arduino compatibles. The program shown in this appendix
comes with several preprogrammed sounds:

+ A bird chirp (best)

» Cat meows (a “meeee-ow,” a “me-oooow,” and a “mew")

» Dog sounds (“ruff” and “arf™)

» A somewhat mechanical-sounding owl

/ “Ruff” and “woof” are conventional representations in the
English language of the barking of a dog. Onomatopoeia or
imitative sounds vary in other cultures: people “hear” a dog's
barks differently and represent them in their own ways. Some
equivalents of words in other languages are listed in Wikipe-
dia. You can hear different sounds at http./
www.bzzzpeek.com.

Part of the creative process is making your project sound like what you
believe it should sound like. This will probably involve a fair amount of
experimentation. Most advanced computers use samples of real sounds
taken with a microphone. This sound data would take up too much mem-
ory for Trinket's onboard memory, though, and using a ROM memory chip
takes many microcontroller pins.

225

http://en.wikipedia.org/wiki/Onomatopoeia
http://en.wikipedia.org/wiki/Onomatopoeia
http://www.bzzzpeek.com/
http://www.bzzzpeek.com/

The method used here turns a digital pin on and off very fast to make
sounds at various frequencies. A piezo speaker is used to output the
sound, although a Trinket pin could just as well drive an audio amplifier and
speaker (with more power draw and a larger size).

The beep function used in Example 3-2 maps specific frequencies and
durations to a digital pin. Example A-1 uses a different function, playTone,
which takes fewer mathematical calculations and will work faster. But the
values you send it are not in Hertz. Rather, the highest value (15000) is a
low frequency, and the highest shrill is the lowest value (50). Number val-
ues beyond these are not reproduced by a piezo speaker. The specified
duration is in milliseconds (a millisecond is one thousandth of a second).

If you have an Arduino Uno/Leonardo/Mega/etc. handy, you can use a
serial monitor to select values for different sounds using a potentiometer
and see the values on the serial monitor. If you have a Trinket, you can lis-
ten to a tone and display the output frequency by connecting an FTDI
Friend as a serial monitor. The circuit to generate sounds is shown in
Figure A-1. The code is listed in Example A-1, which may be downloaded
from the repository for this book (directory Appendix A Code, subdirectory
AppendixA_0lSoundtest). If you use a Trinket, note the slight code changes
required.

This code will run on an Arduino Uno, Leonardo, Mega, or other AVR-
compatible microcontroller. The code also works on a Trinket with SPEAKER
changed to 2 and using the lines defining the SoftwareSerial library, which
communicates to an external FTDI Friend serial board.

You can add value/duration values together to make increasingly complex
sounds. A tone can be ramped up or down to get effects, also.

To start, map out your desired sound into component sounds. For example,
for the “meow” sound for a cat:

1. Start with the "m"” sound: use the varyFrequency function to find an
“mmm” (maybe 5100 on the output scale). The sound is short, so |
chose 50 milliseconds.

2. The “e" is "eeee”, which lasts longer, so the value 394 sounded right.
Also, the sound is longer, so trial and error led to a value of 180
milliseconds.

3. The “0" is a more complex sound, starting high (990) and getting a bit
lower (1022). How long you run the loop and the duration specified for
each sound will vary how it sounds.

4. Finally, “w" is enough like “m" that it is repeated, as no better sound
could be found.

226 Appendix A

http://bit.ly/GettingStartedWithTrinket

Made with [JJ Fritzing.org

USB

S ON []

Potentiometer You can use a
(variable resistor) small breadboard
type like this

Figure A-1. An Arduino circuit to find specific sounds for your project

Example A-1. Code for testing various sounds and
sound combinations on an Uno
/* Trinket Sound Testing Module

Works on Arduino Uno, Leonardo, Mega, etc.
This can work on Trinket with pin changes and an FTDI Friend.
*/
#define SPEAKER 11 // Piezo Speaker pin (positive lead)
// for Trinket, change to 2
#define POT A0 // For Trinket, use 1 for pin #2 (not A1)
//#include <SoftwareSerial.h>

Appendix A 227

//SoftwareSerial Serial(1,0); // If Trinket, serial out pin #0

void setup() {
Serial.begin(9600);
pinMode(SPEAKER, OUTPUT); // Important to set pin as output

void loop() { (1]
chirp(); delay(2000);
meow(); delay(2000);
meow2(); delay(2000);
mew(); delay(2000);
ruff(); delay(2000);
arf(); delay(2000);
hoot(); delay(2000);

// varyFrequency(); @

// scale(); // Plays a tone scale

}

void varyFrequency() {
// Use potentiometer to produce one tone per value of pot
// Food for getting pitch value to use in making sound routines
int reading;
const uint8_t scale = 1; // 1 for high frequencies, scale up to 15 for
// lowest fregs
reading = scale * analogRead(POT); @
playTone(reading, 1000);
Serial.print("Freq = ");
Serial.println(reading);

}

void chirp() { // bird chirp
for(uint8_t i=200; i>180; i--)

playTone(i,9);

void meow() { // cat meow (emphasis on "me")
uint16_t i;
playTone(5100,50); // "m" (short)
playTone(394,180); // "eee" (long)
for(i=990; i<1022; i+=2) // vary "ooo" down

playTone(i,8);

playTone(5100,40); // "w" (short)

}

void meow2() { // cat meow (emphasis on "ow")
uint16_t i;
playTone(5100,55); // "m" (short)
playTone(394,170); // "eee" (long)
delay(30); // wait a tiny bit
for(i=330; i<360; i+=2) // vary "ooo" down

playTone(i,10);

playTone(5100,40); // "w" (short)

}

228 Appendix A

void mew() { // cat mew

uint16_t i;
playTone(5100,55); // "m" (short)
playTone(394,130); // "eee" (long)
playTone(384,35); // "eee" (up a tiny bit on end)
playTone(5100,40); // "w" (short)

}

void ruff() { // dog ruff
uint16_t i;
for(i=890; i<910; i+=2) // "rrr" (vary down)

playTone(i,3);

playTone(1664,150); // "uuu" (hard to do)
playTone(12200,70); // "ff" (long, hard to do)

void arf() { // dog arf
uint16_t i;
playTone(890,25); // "a" (short)
for(i=890; i<910; i+=2) // "rrr" (vary down)
playTone(i,5);
playTone(4545,80); // intermediate

playTone(12200,70); // "ff" (shorter, hard to do)

void hoot() { // owl hoot (fairly mechanical...)
uint16_t i;
playTone(50,2); // short low to make "h" (hard to do)
for(i=0; i<240; i=i+2) { // "o000" sound (vary tones slightly

if(i%2) playTone(1832, 2); // every 2 ms to soften)
else playTone(1800, 2);

playTone(1790,10); // bring up slightly near end
playTone(14000,3); // next 6 to simulate a "t," which is
delay(2); // again a hard sound to do
playTone(14000,3);

delay(2);

playTone(14000,3);

}

void playTone(uint16_t tonel, uint16_t duration) { @
if(tone1l < 50 || tonel > 15000) return; // These do not play
for (long i = 0; i < duration * 1000L; i += tone1 * 2) {
digitalWrite(SPEAKER, HIGH);
delayMicroseconds(tone1);
digitalWrite(SPEAKER, LOW);
delayMicroseconds(tonel);

}
}
void scale() { // Play different frequencies in sequence
for(uint16_t i=50; i<15000; i++) {
playTone(i,20);
}

Appendix A 229

@ The loop function plays the different pre-made animal sounds. If you
add a new sound, comment out the animal functions.

® Usethe varyFrequency function to set a tone you might wish to use.

(3] analogRead produces values from 0 to 1023. To get tones from 0 to
2047, change SCALE to 1; to get 0 to 3071 change it to 2, etc. This pro-
vides a bit more granularity at lower frequencies.

o The function playTone plays a tone on a piezo speaker. Shorter values
produce higher frequencies—this is the opposite of beep but avoids
complex math.

That is “meeee-ow.” For a cat, “me-oooow” and “mew" are variations. You
may feel they do not sound cat-like enough, which is fine. You can define
your purr-fect sound using these methods.

The math used in playTone is much simpler than the code used in the beep
function used in the Theramin project, which is relisted here:

void beep (unsigned char speakerPin,
int frequencyInHertz,
long timeInMilliseconds) {
int x;
long delayAmount = (long)(1000000/frequencyInHertz);
long loopTime = (long)((timeInMilliseconds*1000)/(delayAmount*2));
for (x=0; x<loopTime; x++) {
digitalWrite(speakerPin,HIGH);
delayMicroseconds(delayAmount);
digitalWrite(speakerPin,LOW);
delayMicroseconds(delayAmount);
}
}

The logic in the beep function uses more complex mathematical functions
(two 32-bit-long divides with additional multiplications) than playTone. The
8-bit Trinket can do 32-bit integer math, at the expense of time. To keep
the calculations simpler and less time-consuming, playTone sacrifices
code simplicity for code speed. When playing several short sounds at dif-
ferent frequencies, it can be important not to spend too much time
calculating.

More mechanical sounds or musical notes may also be created using these
methods. If creating complex sounds (a musical phrase with different fre-
quencies) is not needed, then the beep function, with its similarity to the
Arduino built-in tone function, would be easier to use.

Sound is a powerful method of interaction with users. Trinket has the capa-
bility to generate sounds with as little as one external component. With
interactive electronics projects, sound becomes a great method for provid-
ing feedback and circuit or sensor indications.

230 Appendix A

B/Parts Sourcing

The Trinket is manufactured by Adafruit Industries. Adafruit is typically lis-
ted as the supplier for parts in this book if they carry them, both for com-
patibility and ease of ordering. The liberal use of Adafruit components also
stems from tutorials that originally were posted to the Adafruit Learning
System.

Trinkets and other Adafruit parts may be obtained from Adafruit distribu-
tors and some third-party electronics sellers. A list of official Adafruit dis-
tributors may be found at http:/www.adafruit.com/distributors/. Not all
distributors carry the full line of Adafruit parts.

One of the most frequently asked questions on forums is: “I bought this
part on eBay, will it work with Trinket?” The answer is “maybe”. You will
probably have to try to figure things out on your own—that great price
online may have come with little or no technical support. You can try Inter-
net searches to fill the gap. The support information and forums on estab-
lished vendor websites often make it worth paying a bit extra.

Trinket

The main Trinket supplier in the United States is Adafruit, where you can
buy all of the following:

» Trinket 5V (each), Adafruit #1501

 Trinket 3V (each), Adafruit #1500

 Trinket 6-pack (3 x 5V and 3 x 3V), Adafruit #1509

Adafruit's Trinket is different from their Trinket Pro, which
was released after the Trinket. The Trinket Pro is substantially
different from the Trinket used in this book.

The Trinket is also available at Maker Shed and from additional distributors
listed on the Adafruit website. Distributors will probably have their own
part numbers. Be sure to carefully choose the type of Trinket you want to
use—for some projects, the Trinket voltage is not interchangeable.

231

http://www.adafruit.com/
http://learn.adafruit.com/
http://learn.adafruit.com/
http://www.adafruit.com/distributors/
http://www.adafruit.com
http://www.makershed.com/search?q=trinket&type=product
http://www.adafruit.com/distributors/

Displays
The displays used in this book rely on the Adafruit I2C backpacks.

Without a breakout board to simplify the interface, the Trinket could proba-
bly not (easily) handle the large number of pins most displays require.

Not all libraries for 12C displays have been tested with Trinket but they are
probably compatible, with possible minor code changes for the ATtiny85.

One type of display you may wish to use is a serial display. These use TTL
serial communication to send commands and text. SparkFun and others
sell these. You can use the SoftwareSerial library to write to serial displays.

Sensors

Most sensors used in the Arduino world have libraries to help you use
them. Some may be more complicated to use than others, due to com-
mand interfacing or bus communications. You can use other sensors by
reading a digital or analog pin. When researching the sensor you want to
use, look at the datasheet to see if the sensor can be read easily with a
Trinket. If the datasheets appear rather cumbersome, some searching on
the Internet may help you find a project where someone else has used that
specific sensor. This is not cheating! You are just using the blood, sweat,
and tears of others. This allows you to work on the project and not focus on
the parts.

Resistors

You will want to source a number of resistors to work with a Trinket. They
are used for many things, including LED current limiting, pull-ups, and
more. Most electronics parts sellers carry resistors in single-value packs or
assortments with a range of values in a larger kit. The larger kits typically
provide more values per resistor and give a number of resistors you can
experiment with. Adafruit does not carry through-hole resistors as of the
publication of this book.

Resistors come in different wattages. Wattage is voltage multiplied by cur-
rent. The maximum wattage required by a typical digital signal on an
ATtiny85 pin can be calculated as follows: 5 volts x .030 amperes = .150
watts. So, for signals, quarter-watt (0.25W) resistors should be fine. If you
think you will use resistors in higher-current circuits, half-watt (0.5W)
should be fine (they are just a bit bigger in size).

Maker Shed offers assortments such as the 1/4-watt, 365-piece resistor kit
(#MKEE4) and the 1/2-watt 365-piece resistor kit (#MKEED). RadioShack
sells single values and assortments such as the 1/4-watt 500-piece
resistor assortment (#271-312) and 1/2-watt 100-piece resistor assort-
ment (#271-306).

232 Appendix B

https://www.sparkfun.com/
http://www.makershed.com/
http://www.radioshack.com/

Other vendors have similar assortments or single values.

Nuts and Bolts

The Trinket has mounting holes that are a good fit to M2 size screws. Met-
ric hardware that small may not be readily available. Micro Fasteners in the
US has M2 screws in various lengths. Cheese Head screws (a flat, thin
head) are a good choice, but you can choose your favorite type.

Having other assorted screws on hand is always a good idea. Scavenged
screws, nuts, and washers are a staple of Makers everywhere. Taking apart
unneeded items can help you build up a good collection. If you need some-
thing specific that you do not have, buying some hardware is always an
option.

Kits

Some suppliers have parts kits for experimenters, including some targeted
to Arduino enthusiasts. The value in these kits varies, and the parts may
not be the same as the ones used in this book. If you have kit parts on
hand, go ahead and see about using them.

Appendix B 233

http://www.microfasteners.com/

C/Publications

The following publications may assist you in working with the Trinket.

ATtiny85

ATtiny 25/45/85 Datasheet, Atmel Corporation, 2013
The official datasheet is the authority on how the ATtiny85 works. You
might cringe at 234 pages of technical data, but there is a great deal of
helpful information here: http://bit.ly/ATtiny_Datasheet

Books

Make: Basic Arduino Projects, by Don Wilcher (Maker Media)
This companion book to the Ultimate Arduino Microcontroller Pack
(Maker Shed #MSUMP1) provides 30 clearly explained projects that
you can build with this top-selling kit right away—including multicol-
ored flashing lights, timers, tools for testing circuits, sound effects,
motor control, and sensor devices.

Make: Electronics, by Charles Platt (Maker Media)
Licking a battery is your first assignment as you begin the lessons in
this unique and colorful guide that uses “learning by discovery” to
teach basic electronics. First, you build and experience the circuit (as
in the aforementioned battery licking), then you learn the theories
behind it. You will “burn things out, mess things up—that's how you
learn.”

Make: Learn to Solder, by Brian Jepson, Tyler Moskowite, and Gregory
Hayes (Maker Media)
Learn the fundamentals of soldering and pick up an essential skill for
building electronic gadgets. Discover how to preheat and tin your iron,
make a good solder joint, desolder cleanly (when things don’t go so
well), and use helping hands to hold components in place.

Make: Getting Started with Arduino, Second Edition, by Massimo Banzi, the
cocreator of Arduino (Maker Media)
This book offers a thorough introduction to the Arduino open source
electronics prototyping platform that has taken the design and hobby-
ist world by storm. Getting Started with Arduino gives you lots of ideas
for projects and helps you get going on them quickly.

23b

http://bit.ly/ATtiny_Datasheet
http://www.makershed.com/products/make-basic-arduino-projects
http://www.makershed.com/products/make-electronics-book
http://www.makershed.com/products/learn-to-solder-book
http://www.makershed.com/products/getting-started-with-arduino-2nd-edition

Arduino Cookbook, Second Edition, by Michael Margolis (Maker Media)
This book is perfect for beginners to advanced users who want to
experiment with the popular Arduino microcontroller and program-
ming environment. There are more than 200 tips and techniques for
building a variety of objects and prototypes, such as toys, detectors,
and robots—as well as interactive clothing that can sense and respond
to touch, sound, position, heat, and light.

Make: Getting Started with Processing, by Casey Reas and Ben Fry (Maker
Media)
Processing was discussed briefly in Chapter 6. To learn more about
this powerful programming environment that has an interface similar
to the Arduino IDE, this is the book to start with.

Make: AVR Programming, by Elliot Williams (Maker Media)
This project-oriented book lets you start either with an AVR-powered
Arduino or with a bare AVR chip and programmer.

Making Things Talk, by Tom Igoe (Maker Media)
This is the book that started the author's Maker adventure: a great
book marrying microcontrollers and the outside world. Highly
recommended.

Additional Resources

Maker's Notebook
You may use any notebook to document your making experi-
ence. Or you can buy a Maker's Notebook: http:/bit.ly/
Makers_Notebook

Make: magazine
The frontrunner in cutting-edge projects and Maker news.

236 Appendix C

http://www.makershed.com/Arduino_Cookbook_2nd_Edition_p/9781449313876-p.htm
http://www.makershed.com/products/getting-started-with-processing
http://makezine.com/2014/03/06/new-avr-programming-book-from-make/
http://shop.oreilly.com/product/9780596510510.do
http://bit.ly/Makers_Notebook
http://bit.ly/Makers_Notebook
http://makezine.com/

Symbols

#if defined, 221

#ifdef, 221

#include, 124, 218

3D printing, 13, 60, 176

A

AC coupling, 194

Adafruit GFX library, 40, 49, 140, 218

Adafruit Industries, 13, 2, 207, 231
Distributors, 231

Adafruit Learning System, 12, 41, 207,

224,231
Adafruit support forum, 224
Alarm
Block diagram, 148
Branches, 149
Silent, 148
Tripped, 148, 157
Analog Meter Clock project, 110
Analog pin
In Arduino IDE, 25
Location, 5
analogRead, 222
Error, 220
analogWrite, 108, 220, 223
anim.h, 128
Annunciation, 148, 152
Arduino IDE, 9-11
Adafruit version, 10
Learning, 207
Arduino Micro, 199
Arduino Playground, 207
Arduino Uno, 1,199, 203
arduino-nrf24101 library, 41
Arduino-UsiSerial library, 41
ArduinolSP sketch, 204
Atmel Corporation, 3, 208, 235
Atmel Studio, 205
ATtiny85, 3, 37
Pins, 5
Audacity, 188
AVR, 236

Index

Programming, 203
avrdude, 7, 201

B

Backpack, 86
Batteries
AA or AAA, 28,70
LiPo, 8, 28, 70
Recharging, 215
Bitbang, 14, 104
Blog, Adafruit, 207
Bluefruit, 164
Bluetooth, 164-165
4.0,165
Low Energy, 165
Board layout, 224
Books, 11, 235
Bootloader, 200-202, 208
Mode, 22
Repair, 202
Skipping, 223
Breadboard, 17
Buffering, display, 51, 86
Burgess, Phillip, 68, 121, 185

C

Cadmium sulfide photocell, 30, 169, 171

Change interrupts, 107

chip_erase_delay, 221

Clock speed, 7

clock_prescale_set, 96

Color Organ project, 61

Compile, 22

Control Panel, Windows, 11, 13-14, 106,
161,214

D

Datasheet, 232
ATtiny85, 208, 220, 235
DHT22,94
Maxbotix, 99
PING))), 182

237

Servo, 168
SPI, 184
Winbond, 25Q80BV, 186
Debugging, 157
Device Manager, Windows, 13-14
DHT22 sensor, 92
Digispark, 205, 207
Digistump, 205, 207
Digital pin, location, 5
Display, 232
Buffering, 86
12C, 85
LCD, 88
LCD test code, 90
Driver (see USBtinyISP driver)
Signed, 12
Troubleshooting, 15
Unsigned, 223
Windows 8, 12
DS1307 RTC, 111, 115

E

EagleCAD, 224

eBay, 231

EEPROM, 5, 197
Library, 39, 197
Write cycles, 197

Error
4,-5,219,222
PCREL, 220

F

F macro, 135

FastLED library, 40, 56

Field of view, 145

Flash memory chip, Winbond, 185
Floating-point numbers, 51
freeRam function, 51

Frequency, 34

Fried, Limor, 2, 207

FTDI Friend, 103, 112

F_CPU value, 96

G

Gammon, Nick, 108, 208
Gemma, 8,122, 202, 207
GemmaBoot, 204
Getting help, 14

GitHub, 39, 42

Goggles project, 68
Google, 110, 209

238 Index

Google Glass, 78

H

Handshaking (serial), 107
Headers, 18

Hex file, 204

Hookup wires, 18

I

12C, 84-85
Addressing, 84
Backpack, 88, 232
Display types, 85
Master, 84
Slave, 84
Wire library, 85

Impedance matching, 35

Instructables, 205

intl6_t, 52

int32_t, 52

int8_t, 52

Internet of Things, 1, 3, 86, 164

J

JST connector, 29, 123
K

Kaleidoscope goggles, 68
L

Ladyada (see Fried, Limor)
Latching, 143
LED, 3
NeoPixel, 55
(see also NeoPixel)
Tricolor, 55
Types, 56
LED Backpack library, 40
LED Color Organ, 61
Level shifting, 194
Libraries, 37-50
Dependencies, 218
Errors, 218
lllegal characters, 218
Installing, 41
Limitations, 50
Problems, 217
Third-party, 39
Use, 49

libusb-win32, 14

Limor Fried (see Fried, Limor)
Linker, 11, 219

Linux, 12, 14-15, 223

LiPo battery (see Batteries, LiPo)
Low pass filter, 194

M

Mac, 10
Download issues, 10
Library install, 47
No connection erro, 216
Security, 10
Troubleshooting, 215
Maxbotix sensor, 96
Memory
Flash, 4
Heap, 56
Optimization, 50-53
Program, 134
RAM, 4
Memory map, 4, 200
Meters, analog, 113
Monk, Simon, 207
Mounting, 233
Music
Mathematics, 35
Scale, 34

N

Narcoleptic library (see TinyNarcoleptic
library)
NeoPixel, 3
Connections, 64
Library, 40, 73
Limit, 224
Memory, 51
Power, 64
Rings, 68

o

Ohm’s law, 112

Optimization
Program, 51
RAM, 52
Variables, 51

Oscilloscope, 19

P

Parallel port, not available, 216

Passive Infrared Sensor (PIR), 136
PCREL error, 220
Pebble, 78
Photocell, CdS, 30, 169, 171
Ping))) sensor, 181
pinMode function, 223
Potentiometer, 79, 81
Power connections, 5, 28
Power savings, 127
power.h, 39, 96, 124
Preprocessor symbols, 220
Processing language, 188, 192
Learning, 236
PROGMEM, 134
Pull-up resistor, 27, 149
Pulse Width Modulation, 108
Diagram, 109
High speed, 185
Pin location, 5
Servo, 79
Smoothing, 193
Trinket pin 4, 109, 223
pulseln function, 102
PuTTY, 106, 162
PWM (see Pulse Width Modulation)

R

R-2R ladder, 149

RAM, 4,134 (see Memory, RAM)
Optimization, 52

Raspberry Pi, 205

Reading, suggested, 11

Reset button, 5-6, 13-14, 21-22, 27,122,
128,131, 133, 195, 202, 213-214,
219-220, 222

Reset pin, 27

Resistor, 18, 232
Kit, 19, 232
Pull-up, 27, 84, 92

RGBLCDShield library, 40

RS-232, 102

RST pin, 5-6, 27, 202, 213

S

Schematics, 28

Screws, 233

SendOnlySoftwareSerial, 39, 108,
112-113, 208

Sensing, 3

Sensors, 91, 232

Serial, 102-108

Index 239

No monitor, 214
Not defined, 222
Object, 107
Servo, 78-83
Analog feedback, 83
Horns, 79
Servo library, with IR library, 219
Servo8Bit library, 41
Shield, display, 149
Show and Tell, Adafruit, 209
Sketch, 21
sleep.h, 39, 124
SoftServo library, 39, 81, 181
SoftwareSerial library, 39, 104, 107, 108
Solder, 18
Learning, 11, 235
Soldering, 12, 18
Soldering iron, 18
SPI, 183
Splice, 71
stk500_getsync(), 219
Supply voltage, 7
Support, manufacturer, 224
Switches, 148

T

Teensy, 199
Temperature and Humidity project, 86
Terminal program, 106
Theremin project, 30
Timers, 38
TinyDHT library, 40, 88
TinyFlash library, 40, 188
TinyLiquidCrystal library, 40, 88, 90
TinyNarcoleptic library, 40
TinyNewPing library, 41
TinyRTClib library, 40
tinySPI library, 41
TinyWireM library, 39, 85-86, 88, 99,
113,124,139, 218, 221
TinyWireS library, 39, 85
Torque, 79
Toy Animal project, 165
Trinket
16 MHz mode, 96
Adafruit support forum, 224
Bootloader restore, 202
Buy, 231
Compared to Uno, 2
Connections, 5
Schematics, 28
Trinket Alarm project, 146

240 Index

Trinket Audio Player project, 185
Trinket Jewelry project, 121
Trinket Occupancy Display project, 135
Trinket Pro, 231

Trinket Rover project, 173
TrinketHidCombo library, 40
TrinketKeyboard library, 40
Troubleshooting, 211

TTL level, 102

Two-Wire Interface (see 12C)

U

uintl6_t, 52
uint32_t, 52
uint8_t, 52
Ultrasonic sensors, 96
Universal Serial Interface, 37, 84-85,
183
USB, 12
Bad cable, 211
Hub, 13, 19
USB 2 port, 19
USB 3issues, 13, 213
USB 3 Issues, 19
VID/PID, 201, 204
USBtiny device, 14
USBtinyISP driver, 11-15
USBtinyISP programmer, 201, 203

v

V-USB, 4, 201, 213
VCC,7
VirtualWire library, 41
VMware, 214

Mac, 216
Voltage divider, 32, 190

w

WAV files, 188

Wearables, 3, 78, 121
Cosplay, 68

Windows, 10
Control Panel, 11, 13, 106, 161, 214
Library install, 44

Windows 8, 12

Winscot, Rick, 173

Wire library, 85 (see 12C)

Z
Zhao, Frank, 208

About the Author

Engineer, Maker, and innovator Mike Barela is currently a senior foreign
service officer with the US Department of State. A graduate of Whitman
College in mathematics/physics and the California Institute of Technology
in electrical engineering, he has worked at Hewlett-Packard, the Caltech/
NASA Jet Propulsion Laboratory, and Boeing. Mike has traveled the world,
living in a number of countries providing security to American embassies.
An avid electronics enthusiast, he has worked with personal computers
since the introduction of the PC. He rekindled his electronics and micro-
controller interests of late, authoring a number of popular articles on using
Arduino-compatible systems. This includes collaboration with Adafruit
Industries on a number of tutorials.

The cover and body font is Benton Sans, the heading font is Serifa, and the
code font is Sans Mono Code.

http://learn.adafruit.com

Hardware/Programming

Getting Started with
Adafruit Trinket

How many Arduinos do you have? How many are permanently
embedded in a project? Despite Arduino’s affordability, costs can
add up when you're making several projects.

This is where Adafruit’s Trinket comes in. Arduino-compatible,
one-fourth the price, tiny, and low-power, the Trinket lets you make
inexpensive and powerful programmable electronic projects. With
the ATtiny85 microcontroller inside, the Trinket is an outstanding
choice for everything from wearables to robots.

Written by a member of Adafruit's tutorial team, Getting Started
with Adafruit Trinket provides a jump start into using Trinket and
offers great projects to inspire your own creations.

In Getting Started with Adafruit Trinket, you’'ll build:

» llluminated projects with Adafruit’s NeoPixel smart colorful LEDs
» An LED Color Organ that changes patterns to music

» Electronic jewelry like a flashing Space Invaders pendant

» Kaleidoscope Goggles to dazzle onlookers

» A personal audio player you program yourself

» A two-wheeled robotic rover

» The Reactive Toy Animal, which moves and makes sounds

» A clock that displays time on analog meters

Make something big with something little.

US $26.99 CAN $28.99
ISBN: 978-1-4571-8594-6

9|781457 185946

T Make:

makezine.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	Recommended Reading
	What You Will Want to Have on Hand
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Introducing Trinket
	Trinket Versus Arduino Uno
	Using Trinket
	The ATtiny85 Microcontroller
	Memory
	Connectivity
	Three Volts or Five Volts?
	The Adafruit Gemma

	Software Installation
	Supported Operating Systems
	The Preconfigured Arduino IDE from Adafruit
	Modifying the Standard Arduino IDE
	The USBtinyISP Driver for Windows
	Seeing the Trinket in Windows
	Windows Driver Troubleshooting
	Linux
	Conclusion

	Connection and Programming
	Preparing the Trinket
	Connecting Trinket to Your Computer
	Loading a Program
	The Trinket Data Pins
	Digital Pins
	Analog Pins

	Exploring Data Pins
	Parts List
	Connections

	Not All Pins Are the Same
	Different Ways to Power Trinket
	Analog and Digital Sensors
	Trinket Theremin
	Parts List
	Wiring
	Code
	Use

	Sound and Music
	Conclusion

	Libraries and Optimization
	Arduino Libraries
	ATtiny-Optimized Libraries
	Installing Libraries
	Where to Install Libraries
	Installing a Library in Windows
	Installing a Library in OS X
	Using Libraries

	Library Issues and Limitations
	Memory Optimizations
	Program Space Optimization
	Variable Optimization

	Conclusion

	Intermediate Projects
	Controlling Smart LEDs: NeoPixels
	Important Things to Know About NeoPixels
	NeoPixel Packaging

	NeoPixel Ornaments
	Parts List
	Build

	LED Color Organ
	How It Works
	Parts List
	Build
	Adjustments
	Mounting

	Kaleidoscope Goggles
	Parts List
	Tools
	Battery Selection
	Wiring
	Software
	Final Assembly and Use
	Safety and Common Sense

	Servos
	Inside a Servo

	Trinket Servo Control
	Parts List
	Wiring
	Code
	Use
	Going Further

	Using I2C—The Two-Wire Interface
	I2C Software
	Using I2C Displays

	Temperature and Humidity Sensing
	Parts List
	Libraries
	The LCD Display
	Testing the Display
	Adjustment
	Sensing
	Code
	How It Works
	Troubleshooting
	Going Further

	Ultrasonic Rangefinding
	Parts List
	Build
	Libraries
	Code
	How It Works
	Troubleshooting

	Communicating via Serial
	Talking Serial
	Exploring Serial Use
	Parts List
	Code
	Use
	Going Further

	Pulse Width Modulation
	The Analog Meter Clock
	Circuit Design
	Parts List
	Build
	Meters
	Libraries
	Code
	How It Works
	Preparing Your Meters
	Meter Mounting

	Conclusion

	Advanced Projects
	Trinket Jewelry
	Parts List
	Choices
	Tools
	Wiring
	Libraries
	Code
	Animation
	Compile
	Changing the Animation
	Finishing the Jewelry

	Program Memory for Data
	Trinket Occupancy Display
	Parts List
	Tools
	Wiring
	Libraries
	Code
	Enclosure and Board
	Box Connections
	Adjustment
	Room Placement
	Going Further

	Trinket Alarm System
	Parts List
	Tools
	Theory
	Multiple Sensors, One Pin
	Project Design
	Annunciation Selections
	Build
	Populating the Board
	Code
	Final Assembly
	Test
	Troubleshooting
	Going Further

	Bluetooth Communication
	Trinket Toy Animal
	Choosing Your Animal
	Parts List
	Tools
	Circuit
	Circuit Variations
	Code
	Preparing the Toy
	Use

	Trinket Rover Robot
	Parts List
	Tools
	3D Printing
	Build
	Wiring
	Code
	Going Further

	SPI Communications
	Trinket Audio Player
	Parts List
	Tools
	Software
	Loading Sounds
	Chip Loading Circuit
	Transferring Audio
	Sound Playback
	Use

	Conclusion

	Going Further with Trinket
	Microcontrollers: Smaller Versus Larger
	The Trinket Bootloader
	The Bootloader Design
	Bootloader Code

	Repairing the Trinket Bootloader
	Programming Bare ATtiny85 Chips
	Other AVR Programming Methods

	Community Resources
	Learning Arduino
	Commercial Resources
	Technical Resources
	Third-Party Sites
	Social Media Resources

	Troubleshooting
	Your USB Cable
	Connectivity Issues
	Arduino IDE Issues
	Mac

	Common Library Problems
	Error Messages
	Compilation Issues
	Upload Errors
	The Serial Monitor

	Usage Issues
	Manufacturer Support

	Making Electronic Sounds
	Parts Sourcing
	Trinket
	Displays
	Sensors
	Resistors
	Nuts and Bolts
	Kits

	Publications
	ATtiny85
	Books
	Additional Resources

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

